Service de Physique de l'Etat Condensé

PDF

Interféromètre électronique Mach-Zehnder en graphène
The electronic Mach-Zehnder interferometer in graphene

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

05-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

Roulleau Preden
+33 1 69 08 73 11

Résumé/Summary

Réalisation d'expériences d'optique quantique électronique dans le graphène
Electron quantum optics experiments in graphene

Sujet détaillé/Full description

L'information quantique repose sur la manipulation de qubits afin d'augmenter la rapidité du traitement de l'information. Dans la matière condensée, deux approches ont été explorées :

• les qubits statiques, couplés à des bus quantiques pour la manipulation et la transmission d’information
• les qubits "volants" qui sont des qubits se propageant dans des circuits quantiques tout en étant manipulés

La recherche dans le domaine des qubits "volants" a conduit à l’émergence récente de l’optique quantique électronique, où les électrons jouent le rôle de photons dans des expériences analogues aux expériences d’optique quantique. Cette nouvelle approche a permis le développement de l’interférométrie quantique électronique ainsi que des sources à électron unique. Pourtant, ces expériences n’ont été menées avec succès que dans les hétéro-structures semi-conductrices refroidies à très basse température. La réalisation d’expériences d’optique quantique dans le graphène serait la démonstration que l’information quantique dans le graphène est désormais envisageable.

L’un des briques élémentaires nécessaire à la réalisation d’expériences d’optique quantique électronique est la lame séparatrice électronique, qui est l’analogue électronique de la lame séparatrice pour les photons. Cependant, la lame séparatrice électronique habituellement utilisée dans les hétéro-structures semi-conductrices n’existe pas dans le graphène à cause de sa structure de bande sans gap. Nous proposons une percée dans cette direction, en utilisant une jonction pn comme lame séparatrice [1]. Cette jonction pn sera l’élément fondamental d’un nouveau type d’interféromètre de Mach Zehnder. Une étude des propriétés de cohérence quantique du graphène en découlera.

[1] Shot noise generated by graphene p-n junctions in the quantum Hall effect regime N. Kumada, F. D. Parmentier, H. Hibino, D. C. Glattli, and P. Roulleau , Nature Communications, 8, 8068 (2015)
Quantum computing is based on the manipulation of quantum bits (qubits) to enhance the efficiency of information processing. In solid-state systems, two approaches have been explored:
• static qubits, coupled to quantum buses used for manipulation and information transmission,
• flying qubits which are mobile qubits propagating in quantum circuits for further manipulation.

Flying qubits research led to the recent emergence of the field of electron quantum optics, where electrons play the role of photons in quantum optic like experiments. This has recently led to the development of electronic quantum interferometry as well as single electron sources. As of yet, such experiments have only been successfully implemented in semi-conductor heterostructures cooled at extremely low temperatures. Realizing electron quantum optics experiments in graphene, an inexpensive material showing a high degree of quantum coherence even at moderately low temperatures, would be a strong evidence that quantum computing in graphene is within reach.
One of the most elementary building blocks necessary to perform electron quantum optics experiments is the electron beam splitter, which is the electronic analog of a beam splitter for light. However, the usual scheme for electron beam splitters in semi-conductor heterostructures is not available in graphene because of its gapless band structure. I propose a breakthrough in this direction where pn junction plays the role of electron beam splitter [1]. Based on this, an electronic Mach Zehnder interferometer will be studied to understand the quantum coherence properties of graphene.


[1] Shot noise generated by graphene p-n junctions in the quantum Hall effect regime N. Kumada, F. D. Parmentier, H. Hibino, D. C. Glattli, and P. Roulleau , Nature Communications, 8, 8068 (2015)

Mots clés/Keywords

Physique quantique, graphène, optique quantique
PDF

Stabilsation d'un état de Fock dans un circuit Josephson polarisé en tension
Stabilization of a Fock state in a dc biased Josephson junction circuit

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

06-04-2018

Durée

3 mois

Poursuite possible en thèse

oui

Contact

PORTIER Fabien
+33 1 69 08 72 16/74 75

Résumé/Summary

Nous couplerons une jonction Josephson polarisée en tension à deux résonateurs micro-ondes: l'un fortement couplé et l'autre étant un mode 'poubelle' , faiblement couplé et de durée de vie courte. Si l'énergie d'une paire de Cooper transmise par la jonction correspond à la somme des énergies d'un photon dans des deux modes, ce dispositif stabilise l'état Fock à un photon dans le mode fortement couplé.
We will couple a dc voltage biased Josephson junction to two microwave resonators: a strongly coupled mode and a dump mode with low coupling and short lifetime. If the energy of a Cooper pair transmitted through the junction corresponds to the sum of the energies of a photon in either modes, this stabilizes a single photon Fock state in the stringly coupled mode.

Sujet détaillé/Full description

Ce projet appartient au domaine très actif des micro-ondes quantiques avec des circuits à base de jonctions Josephson. Nous souhaitons montrer que, en concevant de manière astucieuse l'environnement électromagnétique d'une jonction Josephson polarisée en tension continue, on peut stabiliser un état Fock d'un résonateur micro-ondes. Le dispositif impliqué dans ce projet est le suivant: une jonction Josephson est couplée à deux résonateurs de fréquence ν1, ν2 et polarisée à une tension V. Comme la jonction Josephson est un élément non dissipatif, un courant continu ne circule dans le circuit que si 2eV = n1 hν1 + n2 hν2, de sorte que l'énergie fournie par le générateur lors du transfert d'une paire Cooper est convertie en excitations électromagnétiques des résonateurs. Le but de ce stage est de démontrer que ce dispositif peut être utilisé pour stabiliser l'état Fock à un photon dans l'un des résonateurs: en augmentant le couplage du résonateur 1 à la jonction, on entre dans un régime où la transition de | 1> vers | 2> est supprimée. Pour 2eV = hν1, ce blocage ne stabilise pas l'état | 1> , car une paire de Cooper peut remonter la tension de polarisation, avec une transition de | 1> vers |0> . Pour supprimer cette possibilité, nous allons utiliser un deuxième mode comme poubelle, en lui donnant une durée de vie très courte. En réglant la tension à 2eV = hν1 + hν2: une paire de Cooper passe par effet tunnel à travers la jonction, émettant un photon dans chacun des deux résonateurs, le mode 2 se vide rapidement et, par conséquent, le passage en sens inverse d'une paire de Cooper est supprimé par conservation de l'énergie, stabilisant l'état Fock | 1> dans le premier mode. Le stagiaire sera impliqué dans toutes les étapes de l'expérience: la conception de l'échantillon, sa fabrication par nanolithographie, son refroidissement par un réfrigérateur à dilution et la caractérisation du rayonnement par des mesures hyperfréquences à très faible bruit. Toutes ces techniques sont bien maîtrisées par notre groupe.

1 M. Westig et al., Phys Rev Lett 119, 137001 (2017)
2 P. P. Hofer, J.-R. Souquet, et A. A. Clerk, Phys. Rév. B 93, 041418 (2016)
This project belongs to the fast growing field of quantum microwaves with Josephson junction circuits. We wish to show that by astutely designing the electromagnetic environment of a dc biased Josephson junction, one can stabilize a Fock state of a microwave resonator. The device involved in this project is the following: a Josephson junction is coupled to two resonators of frequency ν1,ν2 and biased at a voltage V. As the Josephson junction is a non-dissipative element, a DC current flows through the circuit only if 2eV=n1 hν1+ n2 hν2, so that the energy provided by the generator upon the transfer of a Cooper pair is converted into electromagnetic excitations of the resonators. The purpose of this internship is to demonstrate that this device can be used to stabilize the single photon Fock state in one of the resonators: by increasing the coupling of resonator 1 to the junction, one enters a regime where the transition from |1> to |2> is suppressed. At 2eV = hν1, this blockade doesn’t stabilize the |1> state, as a Cooper pair can tunnel backward, with a transition |1> to |0>. To suppress this possibility, we will use the second mode as a dump mode with a very short lifetime. By setting the voltage at 2eV=hν1+ hν2: a Cooper pair then tunnels through the junction, emitting a photon in both resonators, mode 2 empties quickly, and therefore the back tunneling of a Cooper pair is suppressed by energy conservation, stabilizing the single photon Fock state of resonator 1. The trainee will be involved in all the steps of the experiment: design and fabrication of the sample, using nanolithography, cooling of the sample by a dilution refrigerator, and characterization by ultra-low-noise microwave measurements. All these techniques are well mastered by our group.

1 M. Westig et al., Phys Rev Lett 119, 137001 (2017)
2 P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Phys. Rev. B 93, 041418 (2016)

Compétences/Skills

Nanofabrication, cryogénie, électronique à bas bruit
Nanofabrication, cryogenics, ultralow noise electronics
PDF

Moteur thermique quantique à base d'une jonction Josephson polarisée en tension
Quantum thermal engine with a voltage biased Josephson junction

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

06-04-2018

Durée

3 mois

Poursuite possible en thèse

oui

Contact

PORTIER Fabien
+33 1 69 08 72 16/74 75

Résumé/Summary

Nous développerons un moteur thermique quantique basé sur une jonction Josephson polarisée par une tension DC couplée à deux résonateurs micro-ondes, un chaud et à haute fréquence et un de basse fréquence, plus froid. Des photons haute fréquence sont absorbés et des photons de basse fréquence émis, la différence d'énergie étant convertie en énergie électrostatique.
We will develop a quantum thermal engine based on a dc voltage biased Josephson junction coupled to two microwave resonators, a hot, high frequency one and a cold, low frequency one. High frequency photons are then absorbed and low frequency one emitted, the energy difference being converted into electrostatic energy.

Sujet détaillé/Full description

Ce projet appartient au domaine nouveau et actif qu'est la thermodynamique quantique. Nous souhaitons développer un moteur thermique simple dont le principe de fonctionnement est intrinsèquement quantique. Le dispositif impliqué dans ce projet est le suivant: une jonction Josephson est couplée à deux résonateurs de fréquence ν1, ν2 avec ν1> ν2 et sollicité à une tension V. Comme la jonction Josephson est un élément non dissipatif, un courant continu ne peut s'écouler à travers le circuit que si 2eV = n1 hν1 + n2 hν2, de sorte que l'énergie fournie par le générateur lors du transfert d'une paire Cooper est convertie en excitations électromagnétiques des résonateurs. Nous avons récemment détecté le rayonnement émis à 2eV = hν1 + hν2, le transfert d'une paire Cooper étant alors associé à l'émission d'un photon dans les deux résonateurs. Nous avons montré que le rayonnement alors émis est non classique [1]. Le but de ce stage est de démontrer que ce dispositif peut être utilisé comme moteur thermique: lorsque les deux modes sont maintenus à des températures différentes, avec T1> T2, choisies de sorte qu'il y ait plus de photons dans 1 que dans 2. Ensuite, si en polarisant la jonction à 2eV = hν1-hν2, on s'attend à un passage des paires Cooper remontant le circuit, associée à l'absorption des photons à la fréquence ν1 et à la ré-émission des photons à ν2, ce qui entraîne la conversion de la chaleur en énergie électrique. Contrairement à la plupart des machines classiques, l'efficacité de ce moteur devrait être élevée, même à puissance maximale [2]. L'échantillon étant déjà disponible, le stagiaire effectuera l'expérience, consistant à refroidir l'échantillon avec un réfrigérateur à dilution, assurant des populations différentes dans les deux modes et à mesurer le courant induit par des mesures à très faible bruit. Toutes ces techniques sont bien maîtrisées par notre groupe.

1 M. Westig et al., Phys Rev Lett 119, 137001 (2017)
2 P. P. Hofer, J.-R. Souquet, et A. A. Clerk, Phys. Rév. B 93, 041418 (2016)
This project belongs to the fast growing field of quantum thermodynamics. We wish to develop a simple thermal engine whose operating principle is intrinsically quantum. The device involved in this project is the following: a Josephson junction is coupled to two resonators of frequency ν1,ν2 with ν1>ν2 and biased at a voltage V. As the Josephson junction is a non-dissipative element, a DC current can flow through the circuit only if the energy 2eV =n1 hν1+ n2 hν2 provided by the generator upon the transfer of a Cooper pair is converted into electromagnetic excitations of the resonators. We have recently detected the radiation emitted at 2eV = hν1+ hν2, the transfer of a Cooper pair then being associated to the emission of a photon in both resonators. We have shown that the resulting radiation is non classical [1]. The purpose of this internship is to demonstrate that this device can be used as a thermal engine: When the two modes are at held at different temperatures, with T1>T2 , chosen so that there are more photons in 1 than in 2. Then if biasing the junction at 2eV = hν1- hν2, one expects a backflow of Cooper pairs, associated to the absorption of a photons at frequency ν1 and re-emission of photons at ν2., resulting in the conversion of heat into electrical work. Unlike most classical machines, the efficiency of this engine is predicted to be high, even at maximum power[2]. The sample being already available, the trainee will perform the experiment, cool the sample with a dilution refrigerator, ensure different populations of the two modes and measure the induced current by ultra low-noise measurements. All these techniques are well mastered by our group.

1 M. Westig et al., Phys Rev Lett 119, 137001 (2017)
2 P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Phys. Rev. B 93, 041418 (2016)

Compétences/Skills

Nanofabrication, cryogénie, électronique à bas bruit
Nanofabrication, cryogenics, ultralow noise electronics
PDF

Transport quantique de chaleur dans les hétérostructures de Van der Waals à base de graphène
Quantum heat transport in graphene Van der Waals heterostructures

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

09-04-2018

Durée

3 mois

Poursuite possible en thèse

oui

Contact

PARMENTIER François
+33 1 69 08 73 11

Résumé/Summary

L'objectif de ce projet est d'explorer par des mesures de bruit le transport quantique de chaleur dans les nouveaux états de la matière apparaissant dans le graphène ultra-propre sous fort champ magnétique.
The goal of this project is to explore quantum transport of heat in new states of matter arising in ultra-clean graphene in high magnetic fields, using ultra-sensitive electronic noise measurements.

Sujet détaillé/Full description

L’obtention d’échantillons de graphène (un cristal bidimensionnel d’atomes de carbone dans un réseau en nid d’abeilles) ultra-propres a récemment permis l’observation de nouveaux états de la matière condensée dans le graphène sous fort champ magnétique. En particulier, de nouveaux états de l’effet Hall quantique ont été observés pour des très faibles densités de porteurs de charge [1], pour lesquelles les interactions et les corrélations électroniques peuvent rendre le graphène totalement isolant, ou faire donner lieu à un régime d’effet Hall quantique de spin. Dans celui-ci, l’intérieur du plan de graphène est isolant, et le courant électrique est transporté uniquement le long des bords, chaque orientation de spin se propageant dans une direction opposée. La nature exacte de ces différents états n’est pas encore complètement connue, du fait notamment qu’il n’est pas possible de sonder les propriétés des régions isolantes par des mesures usuelles de transport électronique.

Nous proposons une nouvelle approche pour sonder ces phases, basée sur la mesure du flux quantique de chaleur transporté par les excitations neutres de ces systèmes, comme les ondes de spin, à très basse température. Notre méthode consistera à connecter le graphène avec des petites électrodes métalliques qui serviront de réservoirs thermiques. La température de chacun de ces réservoirs sera déterminée à l’aide de mesures de bruit ultra-sensibles [2], ce qui donnera accès au flux de chaleur.

La première étape consistera à fabriquer les échantillons de graphène encapsulé dans du nitrure de bore hexagonal [3]. Cette technique, récemment développée au laboratoire, permet d’obtenir des cristaux de graphène ultra-purs, et de relativement grande taille. En parallèle, une plate-forme expérimentale pour effectuer des mesures de bruits ultra-haute sensibilité, à très basse température et forts champs magnétiques, sera mise en place au laboratoire.

[1] Young et al., Nature 505, 528-532 (2014).
[2] Jezouin, Parmentier et al., Science 342, 601 (2013).
[3] Wang et al., Science 342, 614 (2013).
The ability to obtain ultra-clean graphene (a two-dimensional crystal made of Carbon atoms in a honeycomb lattice) samples has recently allowed the observation of new phases of condensed matter in graphene under high magnetic fields. In particular, new states of the quantum Hall effect were observed at low charge carrier density [1], where interactions and electronic correlations can either make graphene completely electrically insulating, or give rise to the quantum spin Hall effect. In the latter, the bulk of the two-dimensional crystal is insulating, while electronic current is only carried along the edges of the crystal, with opposite spins propagating in opposite directions. The exact nature of those various states is still not fully understood, as one cannot probe the properties of the insulating regions by usual electron transport measurements.

We propose a new approach to probe those phases, based on the measurement of quantum heat flow carried by chargeless excitations such as spin waves, at very low temperature. Our method will consist in connecting the graphene crystal to small metallic electrodes which will be used as heat reservoirs. The temperature of each reservoir will be inferred by ultra-sensitive noise measurements [2], allowing us to extract the heat flow.

The first step of this project will consist in fabricating the samples made of graphene encapsulated in hexagonal boron nitride [3]. This technique, which we have recently developed in our lab, allows to obtain large-area, ultra-clean graphene flakes. In parallel, an experimental platform for low-temperature, high magnetic field, ultra-high sensitivity noise measurements will be set up.

[1] Young et al., Nature 505, 528-532 (2014).
[2] Jezouin, Parmentier et al., Science 342, 601 (2013).
[3] Wang et al., Science 342, 614 (2013).

Mots clés/Keywords

Physique quantique, graphène, transport de chaleur
Quantum physics, graphene, heat transport

 

Retour en haut