CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact

Photo-électrolyse de l’eau assistée par une couche pérovkite ferroélectrique
Water photolectrolysis assisted by a perovskite ferroelectric layer

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

01-05-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MAGNAN Helene
+33 1 69 08 94 04

Résumé/Summary

Des photo-anodes dédiées à la photo-électrolyse de l’eau seront réalisées et caractérisées. Il s’agira d’hétérojonctions d’oxydes élaborées par épitaxie par jets moléculaires dont une couche sera ferroélectrique et polarisée électriquement. Les effets de la polarisation électrique sur les propriétés de photo-électrolyse seront étudiés.
Thin epitaxial films dedicated to water photolectrolysis will be prepared by atomic oxygen plasma assisted molecular beam epitaxy and characterized. We will study oxide heterojunction containing a polarized ferroelectric layer. We will study the influence of electrical polarization on the photoanode efficiency.

Sujet détaillé/Full description

La photo-électrolyse de l’eau permet la production directe d’hydrogène en utilisant l’énergie solaire. L’hydrogène, en tant que vecteur d’énergie propre et décarbonné, est une piste crédible pour résoudre la paradoxale nécessité d’une augmentation de la production énergétique et de la réduction des gaz à effets de serre. Les photo-anodes les plus performantes sont obtenues avec des oxydes métalliques. Toutefois, à ce jour, aucun oxyde semi-conducteur simple ne réunit toutes les propriétés de photo-anode nécessaires pour permettre une production raisonnable d’hydrogène par ce procédé. Les anodes permettant une bonne absorption du spectre lumineux souffrent d’un taux de recombinaison rédhibitoire. Il faut considérer des architectures de matériaux plus complexes afin d’améliorer les propriétés des électrodes simples. Dans cette étude, nous souhaitons combiner une couche d’oxyde efficace en tant que photo-anode avec une couche d’oxyde pérovskite ferroélectrique, fournissant une polarisation électrique interne permettant d’améliorer les propriétés de transport.
Dans le cadre du stage proposé, on s’attachera, dans un premier temps, à déterminer les conditions de croissance d’hétérojonctions monocristallines de type Fe2O3 / BaTiO3 et TiO2 /BaTiO3. Les dépôts seront réalisés sur des substrats adaptés et conducteurs (Pt(001) et Pt(111)), et seront déposés par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique, une technique parfaitement maitrisée au laboratoire. La structure cristalline sera déterminée in situ et en temps réel grâce à la diffraction d’électrons rapides (RHEED). La stœchiométrie des films sera déterminée par spectroscopie d’électrons Auger et par photoémission (XPS). Les propriétés de photo-électrolyse (photo-courant, rendement) seront mesurées en lumière blanche et en lumière monochromatique. L’efficacité de la photo-anode sera analysée en fonction de la nature de l’heterojonction et de l’orientation cristalline. Nous étudierons également les effets de la polarisation électrique (amplitude, orientation) de la couche ferrolectrique sur les propriétés de photo-électrolyse.
Le (la) candidat(e) abordera les techniques d’ultra-vide associées à la croissance par épitaxie par jets moléculaires (dépôt de couches minces, caractérisations in situ) ainsi que la caractérisation électrochimique de photo-anodes. Le caractère multi-disciplinaire du sujet sera très enrichissant pour le (la) candidat(e). Les couches élaborées durant ce stage s’inscrivent dans le cadre de recherches à long terme dans le groupe et d’un projet ANR (photo-pot) qui vient d’être accepté. Ce sujet pourra être prolongé par une thèse.
Thin epitaxial films dedicated to water photolectrolysis will be prepared by atomic oxygen plasma assisted molecular beam epitaxy and characterized. We will study oxide heterojunction containing a polarized ferroelectric layer. We will study the influence of electrical polarization (intensity and orientation) on the photoanode efficiency.
Solar energy has the potential to satisfy the increasing global energy demand. Semiconductors hold great promise for high-efficiency solar water splitting (water photo electrolysis). Indeed, they may be used for solar energy harvesting and/or chemical energy storage. Since the first demonstration using TiO2 as a photoanode, a large number of metal oxides were studied for this application. However, all these simple oxides present some limiting factors (such as electron - hole recombination and position of the conduction band edge below the H+/H2 redox potential) which can explain a relatively low efficiency. Recently, we have shown in our group that the efficiency of solar water splitting can be strongly improved by using a ferroelectric layer (BaTiO3) as photoanode [1].
In the present internship, we propose to prepare and study oxide heterojunctions (Fe2O3 / BaTiO3 and TiO2 /BaTiO3) grown by Atomic Oxygen plasma assisted Molecular Beam Epitaxy. The introduction of the perovskite ferroelectric layer is expected to improve the photoanode efficiency of Fe2O3 or TiO2 thanks to a better charge transport. For all samples, we will determine the crystallographic structure by in situ RHEED and the electronic structure by in situ XPS. The photoanode efficiency as a function of the nature of heterojunction and of its crystallographic orientation. Moreover the influence of ferroelectric polarization vector (direction and strength) will be also measured.

[1] M. Rioult, S. Datta, D. Stanescu, S. Stanescu, R. Belkhou, F. Maccherozzi, H. Magnan, A. Barbier, Appl. Phys. Lett 107, 103901 (2015)

Mots clés/Keywords

Couches minces, épitaxie, caractérisation, photo-anode, photo-électrolyse, cellule solaire
epitaxy, thin films, photoelectrolysis, solar fuel cell

Compétences/Skills

MBE, spectroscopies, photolectrolyse
MBE, Spectroscopy, photoelectrolysis

Manipulation de l'état quantique d'excitations supraconductrices individuelles dans des nanofils
Manipulation of the quantum state of individual superconducting excitations in nanowires

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

3 mois

Poursuite possible en thèse

oui

Contact

GOFFMAN Marcelo
+33 1 69 08 55 29

Résumé/Summary

En contactant des nanofils semiconducteurs entre des électrodes supraconductrices, on crée des états localisés dont on se propose de faire la manipulation quantique cohérente.
We propose to develop experiments aiming at the quantum manipulation of localized states that arise in semiconducting nanowires connecting superconducting electrodes.

Sujet détaillé/Full description

Les électrons dans les supraconducteurs forment des paires de Cooper auxquelles on n'a pas accès individuellement parce qu'elles sont superposées et délocalisées. Des états localisés apparaissent pourtant dans les liens faibles entre électrodes supraconductrices. En utilisant des contacts atomiques, nous avons fait la spectroscopie de ces états [1] et démontré la manipulation cohérente de paires de Cooper localisées [2].

L'objet du stage est de développer des expériences similaires avec des nanofils semiconducteurs d'InAs comme liens faibles entre des supraconducteurs. On s'attend à ce que les temps de cohérence quantique soient plus longs ; en outre, il devrait être possible de manipuler le spin d'électrons localisés parce que le couplage spin-orbite est fort dans l'InAs.

L'étudiant(e) abordera des concepts avancés en mécanique quantique et en supraconductivité. Il apprendra aussi des techniques expérimentales variées : la nanofabrication, les basses températures, les mesures bas-bruit et les mesures microonde. Il/elle sera intégré/e dans un groupe de recherche actif dans le domaine de l'électronique quantique.

[1] L. Bretheau et al., “Exciting Andreev pairs in a superconducting atomic contact”
Nature 499, 312 (2013). arXiv:1305.4091
[2] C. Janvier et al., “Coherent manipulation of Andreev states in superconducting atomic contacts”
Science 349, 1199 (2015), arXiv:1509.03961
Electrons in superconductors form Cooper pairs that cannot be probed individually because they are delocalized and overlapping. However, localized states appear at weak links between superconducting electrodes. Using atomic contacts as a weak link, we performed the spectroscopy of these localized states [1] and demonstrated the quantum manipulation of a localized Cooper pair [2].
During the internship, we plan to develop similar experiments with InAs semiconducting nanowires. Longer coherence times are expected, and, because of the strong spin-orbit coupling in InAs, one should also be able to manipulate the spin of localized electrons.

The student will be integrated in an active research group on quantum electronics and get acquainted with advanced concepts of quantum mechanics and superconductivity. He/she will also learn several experimental techniques: low temperatures, low-noise and microwave measurements, and nanofabrication.

[1] L. Bretheau et al., “Exciting Andreev pairs in a superconducting atomic contact”
Nature 499, 312 (2013). arXiv:1305.4091
[2] C. Janvier et al., “Coherent manipulation of Andreev states in superconducting atomic contacts”
Science 349, 1199 (2015), arXiv:1509.03961

Mots clés/Keywords

Physique mésoscopique, supraconductivité, effet Josephson, électrodynamique quantique en circuit.
Mesoscopic Physics, Superconductivity, Josephson effect, quantum electrodynamics circuits.

Compétences/Skills

Pour ce sujet, l’étudiant(e) devra développer une compréhension approfondie de la mécanique quantique, et apprendra des techniques variées : la nanofabrication, les basses températures, les mesures bas-bruit et les mesures microonde. Il/elle sera intégrée dans un groupe de recherche actif dans le domaine de l’électronique quantique.
The subject requires the student to develop a good understanding of quantum physics, and to learn and master different techniques: nanofabrication, low temperatures, low-noise and microwave measurements. He/she will be integrated in an active research group on quantum electronics.

Mesure du spectre d'excitation d'un skyrmion individuel
Measurement of the excitation spectrum of an individual skyrmion

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

DE-LOUBENS Grégoire
+33 1 69 08 71 60

Résumé/Summary

Les skyrmions magnétiques sont des singularités topologiques intéressantes pour le stockage et le transfert d'information. Le but de ce stage est d'utiliser une technique expérimentale de champ proche unique pour étudier la dynamique d'un skyrmion individuel stabilisé dans un nano-disque magnétique.
Magnetic skyrmions are topological singularities of interest for information storage and processing. The goal of this internship will be to use a unique near field microscopy technique to study the dynamics of a single skyrmion stabilized in a magnetic nano-disk.

Sujet détaillé/Full description

Les skyrmions sont des singularités topologiques qui peuvent apparaître dans certains matériaux magnétiques où une interaction spécifique, dite de "Dzyaloshinskii-Moriya" (DM), est suffisamment intense pour forcer un état d'équilibre de l'aimantation non colinéaire. Ces objets topologiques sont des candidats intéressants pour le stockage et le transfert d'information, car ils sont naturellement couplés à la spintronique [1]. Néanmoins, leur stabilité et leur dynamique restent à être étudiées. Récemment, il a été démontré que de telles structures, de taille typique quelques dizaines de nanomètres, pouvaient être stabilisées à température ambiante, notamment dans des nano-disques fabriqués à partir de multicouches présentant une forte interaction DM [2]. Leur spectre d'excitation a également été calculé [3], mais jamais encore mesuré. Le but de ce stage est d'utiliser un microscope de force par résonance magnétique (MRFM) disponible au laboratoire pour étudier la dynamique d'un skyrmion unique. Cette technique de champ proche, qui utilise une sonde magnétique placée à l'extrémité d'un levier mécanique très souple pour détecter la résonance magnétique est d'une grande sensibilité, puisqu'elle a déjà permis d'étudier la dynamique d'un vortex dans un nano-disque magnétique [4].

Ce travail de stage pourra se poursuivre par une thèse dans le laboratoire d'accueil, en co-tutelle avec l'unité mixte CNRS/Thales, dans le cadre du projet ANR TOPSKY.

[1] J. Sampaio, et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology 8, 839-844 (2013)
[2] C. Moreau-Luchaire, et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature nanotechnology 11, 444-448 (2016)
[3] J.-V. Kim, et al., Breathing modes of confined skyrmions in ultrathin magnetic dots, Phys. Rev. B 90, 064410 (2014)
[4] G. de Loubens, et al., Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk, Phys. Rev. Lett. 102, 177602 (2009)
Magnetic skyrmions are topological singularities appearing in magnetic materials with strong Dzyaloshinskii-Moriya interaction (DMI), which favor non-colinear configurations of the magnetization. These topological objects are interesting candidates for information storage and processing, as they are naturally coupled to spintronics [1]. Nevertheless, their stability and dynamics still have to be investigated. Recently it has been demonstrated that such structures having typical size of a few tens of nanometers could be stabilized at room temperature in nanodisks patterned from multilayers with strong DMI [2]. Their excitation spectrum has also been calculated [3], but never measured. The goal of this internship is to use a magnetic resonance force microscope (MRFM) to study the dynamics of an individual skyrmion. This near field microscopy technique uses a magnetic probe attached at the end of a very soft mechanical cantilever to detect magnetic resonance in nanostructures [4].

This master thesis can be followed by a PhD thesis, in collaboration with the CNRS/Thales laboratory, in the frame of the ANR project TOPSKY.

[1] J. Sampaio, et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology 8, 839-844 (2013)
[2] C. Moreau-Luchaire, et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature nanotechnology 11, 444-448 (2016)
[3] J.-V. Kim, et al., Breathing modes of confined skyrmions in ultrathin magnetic dots, Phys. Rev. B 90, 064410 (2014)
[4] G. de Loubens, et al., Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk, Phys. Rev. Lett. 102, 177602 (2009)

Mots clés/Keywords

Nanomagnétisme, skyrmion, résonance magnétique, spintronique
Nanomagnétism, skyrmion, magnetic resonance, spintronics

Forçage radiatif d'un écoulement convectif turbulent
Radiative forcing of turbulent thermal convection

Spécialité

Hydrodynamique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

02-05-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

Gallet Basile
+33 1 69 08 41 03

Résumé/Summary

Ce problème de physique fondamentale s'applique à de nombreux écoulements naturels. L'approche multi-méthodes - expérimentale, théorique et numérique - permettra au doctorant de développer une connaissance globale des outils de la physique non-linéaire et de la dynamique des fluides géophysiques.
Many natural convective flows are directly driven by a flux of light. This is a central ingredient of Geophysical Fluid Dynamics, which we will study using a combination of experimental, numerical and theoretical methods.

Sujet détaillé/Full description

De nombreux écoulements naturels ont pour origine la convection thermique : l’ensoleillement est plus important au voisinage de l’équateur qu’aux pôles de la Terre, ce qui engendre les intenses mouvements turbulents atmosphériques et les courants océaniques. De même, les écoulements à l’intérieur des planètes et des étoiles résultent de la forte différence de température entre le cœur et la surface de ces objets. Dans le bilan énergétique de ces écoulements, la quantité centrale est le transfert turbulent de chaleur : quelle est la capacité d’un écoulement convectif turbulent à transporter la chaleur d’une région chaude vers une région froide ?

Pour ces écoulements naturels le chauffage est souvent réalisé en volume, soit par décroissance radioactive (manteau terrestre), soit par transfert de photons (étoiles, océans, lacs) ou même de neutrinos (supernovæ). Un des objectifs du projet ERC FLAVE est donc de réaliser l'étude d’écoulements convectifs engendrés itérativement. Le Stagiaire / doctorant sera amené à combiner les approches expérimentale, numérique et théorique afin de caractériser le régime turbulent d'une telle convection radiative. L'objectif est la détermination de lois d’échelles qui pourront être extrapolées aux régimes planétaires et astrophysiques.

Cette thèse porte donc sur une problématique rencontrée dans de nombreux écoulements naturels. L'approche multi-méthodes - expérimentale, théorique et numérique - permettra au doctorant de développer une connaissance globale des outils de la physique non-linéaire et de la dynamique des fluides géophysiques. Il répondra à des questions de physique fondamentale qui trouvent des applications en géophysique, en océanographie et en astrophysique.

Mots clés/Keywords

Dynamique des fluides géophysiques, turbulence, physique non-linéaire.
Geophysical Fluid Dynamics, turbulence, nonlinear physics.

Compétences/Skills

Expériences de laboratoire (vélocimétrie, imagerie IR) Simulation numérique directe Développement asymptotiques
Lab experiments Direct Numerical Simulations Asymptotic methods

Étude théorique d'électrodes en graphène pour l’Electronique Moléculaire
Theoretical study of graphene electrodes for Molecular Electronics

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

DAPPE Yannick
+33 1 69 08 30 32

Résumé/Summary

L'objectif principal de ce stage est de comprendre les mécanismes de transport électroniques au sein de jonctions moléculaires à base de graphène, par des méthodes de type "théorie de la fonctionnelle de densité - DFT".
The main objective of this internship is the theoretical study within the Density Functional Theory (DFT) frame of graphene-based molecular junctions, as well as the understanding of the corresponding electronic transport mechanisms.

Sujet détaillé/Full description

L'électronique moléculaire constitue de nos jours un domaine de recherche très actif, tant pour les aspects fondamentaux de ces nouveaux systèmes qui permettent d'explorer la Physique à l'échelle atomique, que par les possibles retombées en termes de composants électroniques innovants. En effet, outre la capacité à reproduire les composants électroniques à base de silicium (diodes, transistors, …), les molécules peuvent apporter de nouveaux types de réponses électriques du fait d'un grand nombre de degrés de liberté quantiques, modulables en fonction de la molécule considérée. En effet, la nature quantique de ces objets ainsi que les nouvelles fonctionnalités qui y sont associées, ouvrent des perspectives fascinantes pour construire l'électronique du futur. En conséquence, ces nouvelles recherches ont conduit à d'importants développements dans le domaine de l'électronique moléculaire, notamment pour ce qui est du contrôle et de la manipulation du transport électronique à travers une jonction moléculaire. La majorité des jonctions moléculaire est fabriquée à base de molécules connectées à leurs extrémités par des électrodes métallique (or, platine, argent, ….). Or il a été démontré à plusieurs reprises que la connexion de l'électrode à la molécule présente une influence non négligeable sur la conductance électrique du système. En ce sens, de récents développements ont proposés l'utilisation de nouveaux matériaux tels que le graphène, une couche monoatomique de carbone, réputée pour ces fantastiques propriétés de conduction électrique, comme électrodes dans les jonctions moléculaires. Ainsi, il a été observé que la connexion à une électrode en graphène permet d'augmenter significativement la conductance de la jonction pour de longues chaînes moléculaires, et donc de réduire le coût énergétique de ces systèmes.

L'objectif principal de ce stage s'inscrit dans ce cadre par l'étude théorique de jonctions moléculaires asymétriques, basées sur des électrodes en graphène ou MoS2, ainsi que l'étude de fils moléculaires décollés de la surface par une pointe STM. En utilisant la Théorie de la Fonctionnelle de la Densité (DFT), on déterminera la configuration d'équilibre de la jonction moléculaire, ainsi que des propriétés électroniques, avant dans un deuxième temps, à partir des configurations d'équilibre obtenues, de calculer le transport électronique dans un formalisme de Keldysh-Green. Il s'agira alors de comprendre le mécanisme d'augmentation de la conductance par rapport aux jonctions classiques, et de les comparer aux résultats expérimentaux existants. Les différents comportements attendus dans ces systèmes permettent d'étudier la Physique du transport électronique à l'échelle atomique, et peuvent être à l'origine de la conception de nouveaux composants à l'échelle de la molécule unique.
Molecular Electronics constitute nowadays a very active field of research, either for fundamental aspects in these new systems which allow exploring new Physics at the atomic scale, than for the possible applications in terms of innovative electronic devices. Indeed, beyond the ability to reproduce silicon based components (diodes, transistors, …), molecules can also bring new types of electric response due to the great number of quantum degrees of freedom, which are tunable according to the considered molecule. Indeed, the quantum nature of these objects as well as the new associated functionalities open fascinating perspectives to build future electronics. Consequently, those new researches have led to important developments in the field of Molecular Electronics, in particular regarding the control and manipulation of electronic transport through a molecular junction. Most of the molecular junctions are based on molecules connected to metallic electrodes (gold, platinum, silver…). However, it has been demonstrated in several occasions that the connection between molecule and electrode has a non negligible influence on the electric conductance of the system. In that manner, recent developments have proposed to make use of new materials like graphene, which is really well-known for its fantastic electric conduction properties, as electrodes for molecular junctions. Hence, it has been observed that the connection to a graphene electrode allows to significantly increase the junction conductance for long molecular chains, and therefore to reduce the energetic cost of such junction.

The main objective of this internship lies in this frame by the theoretical study of asymmetric molecular junctions based on graphene or MoS2, as well as the study of molecular wires lifted off a surface using a STM tip. By using Density Functional Theory (DFT), we will determine the equilibrium configuration of the molecular junction and the corresponding electronic properties, before in a second time to calculate the electronic transport from the obtained structures, using a Keldysh-Green formalism. The purpose will be to understand the mechanism of conductance increase with respect to classical junctions, and to compare them to existing experimental results. The different expected behaviorsin those systems allow to study the Physics of electronic transport at the atomic scale, and could be exploited for the conception of new devices at the single molecule scale.

Mots clés/Keywords

Théorie, simulations numériques, propriétés électroniques et transport électronique, électronique moléculaire, graphène
Theory, numerical simulations, electronic properties and electronic transport, molecular electronics, graphene

Compétences/Skills

Théorie de la Fonctionnelle de la Densité (DFT), formalisme de Keldysh-Green pour le transport hors-équilibre, modèle de liaisons fortes
Density Functional Theory (DFT), Green Keldysh formalism for non-equilibrium transport, tight-binding model

Logiciels

Fortran, Fireball code

Les phases structurales des couches minces ferroélectriques sous contrainte étudiées par la diffraction des photoélectrons
X-ray photoelectron diffraction study of structural phases in epitaxially strained ferroelectric thin films

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

BARRETT Nick
+33 1 69 08 32 72

Résumé/Summary

Les changements structurels dans les films minces peuvent modifier leur état ferroélectrique et donc la performance de ces matériaux dans des dispositifs nanoélectroniques, capteurs chimiques ou encore comme cellules photovoltaïques. L'objectif du stage est de caracériser les déformations de surface dans la structure atomique de films épitaxiés ferroélecrique par XPD (Photodiffraction de rayons X).
Structural changes in thin films can modify the ferroelectric (FE) state and thus the performance of these materials in nanoelectronic devices, chemical sensors or photovoltaic cells. X-ray Photoelectron Diffraction measure the surface distortions in the atomic structure of epitaxial FE films

Sujet détaillé/Full description

Une des propriétés fondamentales d’un matériau ferroélectrique (FE) est sa polarisation spontanée en-dessous de la température de Curie, qui peut être inversée sous l’application d’un champ électrique externe. Les changements structuraux de surface intervenant dans les couches minces peuvent modifier l’état FE [1] et en conséquence la performance de ces matériaux dans les dispositifs nanoélectroniques, les capteurs chimiques ou les cellules photovoltaïques. En particulier, la polarisation peut être basculée par un recuit sous pression partielle d’oxygène [2] et la contrainte en épitaxie peut générer des phases FE complètement nouvelles [3] .

La diffraction des photoélectrons stimulés par les rayons X (XPD) combine la sensibilité chimique de la photoémission des niveaux de cœur avec celle de l’ordre local autour de l’atome émetteur de photoélectrons. L’intensité de la photoémission est mesurée en fonction de l’angle d’émission au-dessus de l’échantillon [4], donnant des informations sur les distances interatomiques, les angles des liaisons et les états chimiques. Il est alors idéalement adapté aux mesures des distorsions atomiques d’extrême surface des couches minces FE en épitaxie [5]. IRAMIS vient d’acquérir un nouveau dispositif d’XPD à haute résolution angulaire et un système d’acquisition automatisé.

Les couches minces seront préparées par l’Institut National de Physique des Matériaux (Magurele, Roumanie). Les analyses XPD seront faites en fonction des conditions redox des recuits in-situ. L’analyse des données sera effectuée avec les procédures utilisant le logiciel Igo Pro.

[1] A. Pancotti et al., Phys. Rev. B 87, 184116 (2013).
[2] M. Highland et al., Phys. Rev. Lett. 107, 187602 (2011).
[3] R.J. Zeches et al., Science 326, 977 (2009).
[4] J. Osterwalder et al., Phys. Rev. B 44, 13764 (1991).
[5] L. Despont et al., Phys. Rev. B 73, 094110 (2006).
A fundamental property of ferroelectric (FE) materials is their electrically switchable spontaneous polarization below the Curie temperature, which has driven promising applications of such materials as nonvolatile memory storage devices and sensors. Structural changes in thin films can modify the ferroelectric state [1] and thus the performance of these materials in nanoelectronic devices, chemical sensors or photovoltaic cells. The polarization state may be chemically switched by annealing under oxygen [2] and epitaxial strain can engineer completely new FE phases [3].

X-ray Photoelectron Diffraction (XPD) combines the chemical sensitivity of core level photoemission with local order sensitivity around the emitting atom. The photoemission intensity is measured as a function of angle above the sample [4], giving information on interatomic distances, bond angles and chemical states. It is therefore ideally suited to measure the surface distortions in the atomic structure of epitaxial FE films [5]. IRAMIS has recently installed a new, high angular resolution XPD experiment with fully automatic data acquisition system.

Perovskite oxide ferroelectric films have been grown by the National Institute of Materials Physics (Magurele, Romania). XPD data will be acquired for films annealed in both redox conditions. Optimized data analysis will be done using Igor Pro software. The subject requires a good grounding in solid state physics and a desire for experimental teamwork.

(a) Schematic XPD experiment (b) Tetragonal BaTiO3 with Ti (grey) off-centering (c) Ti 2p XPD data from single crystal BaTiO3(001) allowing measurement of the Ti displacement in the surface unit cell.

[1] A. Pancotti et al., Phys. Rev. B 87, 184116 (2013).
[2] M. Highland et al., Phys. Rev. Lett. 107, 187602 (2011).
[3] R.J. Zeches et al., Science 326, 977 (2009).
[4] J. Osterwalder et al., Phys. Rev. B 44, 13764 (1991).
[5] L. Despont et al., Phys. Rev. B 73, 094110 (2006).

Mots clés/Keywords

Diffraction des photoélectrons, ferroélectrique, couches minces, contrainte
Photoelectron diffraction, ferroelectric, thin films, strain

Compétences/Skills

Diffraction des photoélectrons, diffraction des électrons à basse énergie, spectroscopie des photoélectrons
X-ray photoelectron diffraction and spectroscopy. Low energy electron diffraction

Logiciels

Igor Pro

Imagerie et contrôle des parois de domaines polaires dans les matériaux ferroélastiques pour les densités de stockage élevées
Imaging and control of polar domain walls in ferroelastic materials for high density storage media

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

BARRETT Nick
+33 1 69 08 32 72

Résumé/Summary

Les matériaux ferroélastiques peuvent contenir une très forte densité de parois de domaines polaires, ce qui pourrait permettre de les utiliser comme unité de mémoire nanométrique et robuste. L'objectif du stage est d'étudier la composition chimique locale au voisinage des parois de domaine et l'écrantage de la polarisation par injection d'électrons ou la présence de défauts, tels que des lacunes d'oxygène.
Ferroelastic materials can contain a very high density of polar domain walls and could serve as robust, nanoscale memory cells. The aim of the internship is to study the local chemistry in the vicinity of the domain wall and the polarity screening by electron injection and defects such as oxygen vacancies.

Sujet détaillé/Full description

Contexte
La miniaturisation des dispositifs de mémoire pour les densités de stockage très élevées à basse consommation d’énergie est un défi majeur pour une électronique post-CMOS afin d’implémenter de nouvelles fonctionnalités. L’ingénierie des parois de domaines (DWs ou « domain walls ») dans les matériaux ferroïques est une voie où la DW plutôt que le volume du matériau devient l’élément actif. Les verrous sont alors de pouvoir prédire et contrôler cette fonctionnalité nanométrique de la DW [1]. Les DWs sont des régions de transition dans lesquels les changements dans les paramètres d’ordre en allant d’un domaine à l’autre donnent lieu à des effets importants de gradients. Les matériaux ferroélastiques peuvent accommoder une très haute densité de parois [2] avec des moments dipolaires dans la paroi parallèles ou antiparallèles [3] au chevron. Ils peuvent servir de dispositifs fonctionnels robustes comme des mémoires.
Le CaTiO3 est le matériau ferroélastique non-polaire prototypique avec des parois polaires.
Objectifs
Le contrôle de la polarité des parois les rendrait adaptées pour le stockage de l’information à haute densité. L’objectif du stage est d’étudier la chimie locale au voisinage de la DW et l’écrantage de la polarité de la DW par les porteurs de charge libres (injection d’électrons) et par des défauts tels que les lacunes d’oxygène.
Le stage se déroulera au SPEC (UMR CEA/CNRS) de l’institut IRAMIS au CEA-Saclay en collaboration avec Raphael Haumont (ICMMO, Université Paris Saclay). L’élaboration contrôlée de cristaux avec des configurations de domaines ferroïques et piézoéletriques différentes en fonction du champ électrique appliqué pendant la croissance fournira une gamme de densités de paroiss, d’orientations et de polarités. L’étudiant utilisera la microscopie d’électrons à basse énergie (LEEM) et la microscopie à émission des photoélectrons (PEEM) pour caractériser les DWs [4]. Le sujet nécessite une bonne base en physique de l’état condensé et une aptitude pour le travail expérimental en équipe.

Context
Downscaling of memory devices for ultra-high storage densities and low power consumption is a major challenge for post-CMOS electronics in order to implement new functionalities. Domain wall (DW) engineering in ferroic materials is one possible route where the DW rather than the bulk material becomes the active element. The challenge then is to predict and control the nanoscale DW functionality [1]. DWs are transition regions where the changes of the order parameter from one domain to another result in strong gradient effects. Ferroelastic materials can contain a very high density of polar DWs [2] with dipole moments in the wall aligned parallel or antiparallel [3] to the apex and therefore serve as robust, nanoscale functional devices such as memory cells. CaTiO3 is the prototypical non-polar ferroelastic showing DW polarity.

Objectives
Control of the wall polarity would make them suitable for high density information storage. The aim of the internship is to study the local chemistry in the vicinity of the DW and the screening of DW polarity by free charge carriers (injected electrons) and defects such as oxygen vacancies.
The internship work will be carried out at SPEC (UMR CEA/CNRS) of the IRAMIS institute in the CEA-Saclay in collaboration with Raphael Haumont (ICMMO, Université Paris Saclay). The controlled elaboration of crystals, exhibiting different ferro/piezo-domains configurations, as a function of applied electric field during growth will provide a range of DW densities, orientations and polarity. The student will use low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) to characterize the DW arrays [4]. The subject requires a good grounding in solid state physics and a desire for experimental teamwork.

Figure (left) Orientation and hence DW density in single crystal CaTiO3 controlled by in-situ electric field during growth. (centre) Octahedral tilts in CaTiO3 on either side of a ferroelastic DW. (right) low energy electron image of DWs, R and V indicate ridges and valleys. Dark (light) contrast indicates positive (negative) polarity.

[1] G. Catalan, J. Seidel, R. Ramesh, Rev. Mod. Phys. 84, 119 (2012)
[2] H. Poettker and E.K.H. Salje, J. Phys.: Conden. Matt. 26, 342201 (2014)
[3] T. Zykova-Timan & E.K.H. Salje, Appl. Phys. Lett. 104, 082907 (2014)
[4] N. Barrett et al. J. Appl. Phys. 113, 187203 (2013)

Mots clés/Keywords

Parois de domaines, Polarité, PEEM, LEEM, ferroélastique
Domain wall, Polarity, PEEM, LEEM, ferroelastic

Compétences/Skills

Microscopie à émission des photoélectrons (PEEM) Microscopie à électrons à basse énergie (LEEM)
Photoelectron emission microscopy (PEEM) Low energy electron microscopy (LEEM)

Logiciels

ImageJ; Igor Pro

Etude de microstructures multiferroïques encapsulées de type ferrite - pérovskite
Study of embedded ferrite – perovskite type multiferroic microstructures

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

5 mois

Poursuite possible en thèse

oui

Contact

BARBIER Antoine
+33 1 69 08 39 23

Résumé/Summary

L'objectif de ce stage est de réaliser et de caractériser des inclusions de ferrite (CoFe2O4) ferrimagnétique dans une matrice de perovskite (BaTiO3) ferroélectrique. Nous nous appuierons sur l'expertise acquise ces dernières années au laboratoire dans la réalisation par épitaxie par jets moléculaires de couches minces de ces mêmes composés. L’étude sera complétée par des méthodes de pointe accessibles en rayonnement synchrotron.
The objective of the internship is to realize and characterize ferrimagnetic ferrite inclusions (CoFe2O4) in a ferroelectric perovskite matrix (BaTiO3). The realization of the samples will benefit from the expertise gained in recent years, in the laboratory, in growing thin films of such compounds by molecular beam epitaxy. The study will be completed by advanced methods using synchrotron radiation.

Sujet détaillé/Full description

Le couplage magnéto-électrique entre des oxydes ferroélectriques et ferro-, ferri ou antiferro- magnétiques suscite un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion d’énergie. La maitrise de ce type d’oxydes sous forme de nanostructures encapsulées est aujourd’hui particulièrement pertinente. Dans ces systèmes il y a une forte interdépendance des paramètres magnétiques, ferroélectriques et structuraux. Une étude pertinente doit donc aborder l’ensemble de ces aspects.

Le BaTiO3 est l’un des matériaux ferroélectriques de référence et appartient à la famille des oxydes de structure pérovskite. La ferrite de cobalt a de nombreux atouts comme une température de Curie élevée et une forte constante de magnétostriction. L’inclusion de microstructures de CoFe2O4 dans un film de BaTiO3 est un système très bien adapté à la compréhension des mécanismes sous-tendant les propriétés multiferroïques.
La croissance en films minces de ces matériaux est déjà maitrisée au laboratoire. Les dépôts seront réalisés par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique. Dans le cadre du stage proposé on s’attachera à déterminer les conditions de réalisation d’inclusions encapsulées. Ces échantillons seront étudiés ensuite sur les lignes de lumière DIFFABS et HERMES du synchrotron SOLEIL pour déterminer respectivement les propriétés cristallines, la cartographie chimique ainsi que l’ordre magnétique et ferroélectrique.

Les couches élaborées durant ce stage s’inscrivent dans le cadre de recherches à long terme. Ce sujet pourra être prolongé par une thèse. Le stage, tout comme le sujet de thèse pourront donner lieu à un co-encadrement et à un cofinancement entre le laboratoire CEA/SPEC et une des lignes de lumière synchrotron SOLEIL (lignes DIFFABS et HERMES).
The magneto-electric coupling between ferroelectric and ferro, ferri or antiferro-magnetic oxides is of current high interest in the field of spintronics and energy conversion. Mastering this type of oxide nanostructures in the form of embedded microstructures is particularly relevant today. In such systems there is a strong interdependence of magnetic, ferroelectric and structural parameters. A relevant study must address all of these aspects.
The BaTiO3 is an archetypical ferroelectric material that belongs to the family of ferroelectric oxides with a perovskite structure. The cobalt ferrite has many advantages like high Curie temperature and high magnetostriction constant. The inclusion of CoFe2O4 microstructures in a BaTiO3 film is a very suitable system for understanding the mechanisms underlying the multiferroic properties.

The growth of thin films of these materials is already mastered in the laboratory. The deposits will be realized by molecular beam epitaxy assisted by atomic oxygen plasma. Within the internship the conditions of realization of encapsulated inclusions will be determined. These samples will then be studied on beamlines DIFFABS and HERMES at synchrotron SOLEIL to determine respectively the crystalline properties and the chemical mapping as well as the magnetic and ferroelectric orders.

The layers developed during this internship belong to a long-term research program. This topic may be extended by a thesis work. The intership as well as the PhD may lead to a co-management and co-financing between the laboratory CEA / SPEC and synchrotron SOLEIL beamlines (DIFFABS and HERMES lines).

Mots clés/Keywords

Oxydes, multiferroïque, épitaxie par jets moléculaires, synchrotron
Oxides, multiferroic, molecular beam epitaxy, synchrotron

Compétences/Skills

Le (la) candidate abordera les techniques d’ultra-vide associées à la croissance par épitaxie par jets moléculaires ainsi qu’une première approche d’études menés sur grands instruments. On utilisera la diffraction des électrons rapides (RHEED), la spectroscopie d’électrons Auger (AES), la photoémission des niveaux de coeur (XPS), la microscopie en champ proche (PFM), la diffraction des rayons X sur la ligne DIFFABS, la microscopie électronique de basse énergie (LEEM), la spectroscopie d’absorption des rayons X (XAS) et la spectro-microscopie X-PEEM au synchrotron SOLEIL sur la ligne HERMES.
The candidate will address the UHV techniques associated with the growth by molecular beam epitaxy and a first approach of studies conducted on large instruments. We will use Reflexion High Energy Electron Diffraction (RHEED), Auger Electron Spectroscopy (AES), Photoemission core level spectroscopy (XPS), Piezo Force Microscopy (PFM), X-ray diffraction on the DIFFABS beamline, Low Energy Electron microscopy (LEEM), X-ray absorption spectroscopy (XAS) and X-PEEM spectro-microscopy on the HERMES beamline of synchrotron SOLEIL.

Towards quantum computing with nuclear spins
Vers le calcul quantique à base de spins nucléaires

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

BERTET Patrice
+33 1 69 08 55 29

Résumé/Summary

Le stage s'inscrit dans un projet de recherche visant à utiliser des spins nucléaires dans les solides (qui peuvent avoir des temps de cohérence ultra-longs pouvant aller jusqu'à plusieurs heures) comme bits quantiques pour le calcul quantique. Les spins seront mesurés par couplage avec des circuits supraconducteurs.
The internship is part of a research project that aims at using nuclear spins in solids (which can have ultra-long coherence times, up to few hours) as quantum bits for quantum computing. The spin state will be measured by coupling them to superconducting circuits.

Sujet détaillé/Full description

Les spins nucléaires dans les solides sont des systèmes quantiques très bien protégés de leur environnement, et peuvent avoir des temps de cohérence exceptionnellement longs allant jusqu’à plusieurs heures. Il est donc tentant de les utiliser comme support d’information quantique dans un processeur quantique. En revanche il reste très difficile de lire l’état d’un seul spin nucléaire, et plus encore de coupler deux spins nucléaires distants l’un de l’autre, ce qui est nécessaire pour les opérations de logique quantique.
Notre goupe est engagé dans un projet de recherche de long terme (en collaboration avec un industriel et avec le support de l'ERC) qui vise à utiliser des circuits supraconducteurs pour mesurer et interfacer des qubits de spin nucléaire. Dans un premier temps, nous souhaitons démontrer qu’il est possible de mesurer et de manipuler l’état quantique d’un unique spin nucléaire, en utilisant son couplage hyperfin à un spin électronique lui-même couplé à un résonateur supraconducteur. Cette stratégie s’applique à une variété de systèmes physiques, mais nous travaillons en particulier sur les centres NV du diamant, les donneurs dans le silicium, et les ions Erbium dans des matrices d’orthosilicate. Pour cela, nous devons être capables de détecter un unique spin électronique, en un temps de mesure inférieur à une seconde.
Le stage s’appuie sur des résultats récents de notre équipe, qui ont démontré la détection d’un tout petit nombre de spins électroniques, avec une sensibilité 5 ordres de grandeur supérieure à l’état de l’art [1,2,3]. Notre détecteur a dès à présent démontré une sensibilité de 65 spin/\sqrt{Hz} en mesurant des donneurs dans le silicium ; il s’agit donc de gagner encore deux ordres de grandeur. Le but du stage sera d’obtenir ce gain en utilisant un autre système : les ions Erbium en matrice de YSO. Ces ions ont un moment magnétique 7 fois plus élevé que les donneurs dans le silicium, ce qui devrait automatiquement amener la sensibilité du détecteur sous 1 spin/\sqrt{Hz}, permettant d’apporter la première démonstration de détection micro-onde d’un unique spin.
Nuclear spins in solids are quantum systems that are well protected from their environment and can therefore have exceptionally long coherence times (up to several hours). It is thus tempting to use them as carrier of quantum information, in a quantum processor. It remains however utterly difficult to readout the quantum state of a single nuclear spin, and even more so to couple two nuclear spins that are distant from each other, which is needed for quantum logic operations.
Our group is leading a long-term research project (in collaboration with an industrial and with the support of an ERC grant) that aims at using superconducting circuits to measure and interface nuclear spin qubits. In a first step we wish to demonstrate quantum state manipulation and readout of a single nuclear spin, using its hyperfine coupling to an electron spin, itself coupled to a superconducting resonator. This strategy applies to a large variety of physical systems; we work in particular with NV centers in diamond, donors in silicon, and Erbium ions in orthosilicate crystals. In order to reach our goal, we need to be able to detect a single electronic spin, in a measurement time smaller than one second.
The internship relies on recent results obtained in our team, demonstrating the detection of a very small number of electronic spins with a sensitivity 5 orders of magnitude higher than the previous state-of-the-art [1,2,3]. Our spectrometer has demonstrated a sensitivity of 65 spins / \sqrt{Hz} by measuring donors in silicon; we thus simply need to win another two orders of magnitude. The goal of the internship will be to do so by turning to a different system : Erbium ions in a YSO matrix. Indeed, these ions have a magnetic moment that is 7 times higher than donors in silicon, which would automatically bring the spectrometer sensitivity below the 1spin/\sqrt{Hz} value, and would bring the first experimental demonstration of single spin detection with microwave signals.

Mots clés/Keywords

Physique et information quantique
Quantum physics and quantum information

Compétences/Skills

-Techniques de salle blanche (fabrication d'échantillons) - Mesures micro-ondes très bas bruit - Très basses températures (mK)
- Cleanroom techniques - Ultra-low-noise microwave measurements - Cryogenic températures (mK)

Logiciels

Office, Python, Labview, Matematica, CST, Sonnet, ...

Magnétorésistance Géante tout oxyde
All oxide magnetoresistance

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

Solignac Aurelie
+33 1 69 08 95 40

Résumé/Summary

Mise au point des dispositifs GMR basés sur l'empilement tout-oxyde LSMO/LBCO/LSMO.
Étude du dépôt de cuprate La4BaCu5O13 (LBCO) sur manganite (La,Sr)MnO3 (LSMO). Impact des paramètres de dépôt sur la structure cristalline et la morphologie du film mince, analysées par diffraction des rayons X et microscopie à force atomique (AFM).
Development of GMR devices based on the all-oxide stack. : LSMO / LBCO / LSMO
Study of the growth of the La4BaCu5O13 (LBCO) cuprate on manganite (La, Sr) MnO3 (LSMO). Impact of the growth parameters on the crystal structure and the morphology of the thin film, studied by X-ray diffraction and atomic force microscopy (AFM).

Sujet détaillé/Full description

La manganite (La,Sr)MnO3 (LSMO), appartenant à la famille des oxydes de structure pérovskite, présente une très forte polarisation en spin et a un comportement demi métallique, tout en étant ferromagnétique et métallique à température ambiante. Ce matériau semble donc être un bon candidat comme électrode dans des jonctions tunnels magnétiques afin de développer des capteurs magnétiques ultra-sensibles, basés sur la magnétorésistance tunnel (TMR) et fonctionnant à basse température. En effet, des valeurs de TMR de 2000% ont été obtenues pour des jonctions LSMO/SrTiO3 (STO)/LSMO[1]. Cependant ces ratios n’ont pas été reproduits et des valeurs maximales autour de 500% sont usuellement observées. Une des explications avancées est que la forte polarisation du LSMO serait dégradée à l’interface avec la barrière alors que cette interface contrôle les propriétés du transport tunnel. De plus, le niveau de bruit obtenu dans ce type de jonction tunnel tout oxyde est important et lié au transport tunnel à travers la barrière de STO.

Une voie non explorée et qui permettrait de s’affranchir des problèmes avec la TMR serait de développer un élément à magnétorésistance géante (GMR). La barrière isolante est alors remplacée par une barrière métallique, qui allierait un bruit réduit et une magnétorésistance élevée car non limitée par l’interface. L’enjeu est alors de trouver un oxyde métallique qui possède une longueur de diffusion de spin importante, et pour lequel des effets d’interface n’apparaissent pas, afin d'éviter une perte de polarisation de spin dans le LSMO. Le cuprate La4BaCu5O13 (LBCO) est dans cette optique un candidat très intéressant, mais sa croissance par ablation laser reste à optimiser au laboratoire.
Le but du stage est de mettre au point des dispositifs GMR basés sur l'empilement tout-oxyde LSMO/LBCO/LSMO. Tout d'abord il s'agira de maîtriser la croissance de LBCO sur LSMO par ablation laser (pulsed laser deposition, PLD), en étudiant l’impact des paramètres de dépôt sur la structure cristalline et la morphologie du film, analysées par diffraction des rayons X et microscopie à force atomique (AFM). Ensuite, des empilements complets LSMO/LBCO/LSMO seront déposés et des dispositifs GMR micro-fabriqués afin d'en caractériser la magnétorésistance et le niveau de bruit, via des mesures de transport en fonction de la température.

Mots clés/Keywords

Electronique de spin, capteurs magnétorésistifs, films minces oxydes perovskites

Compétences/Skills

Dépôts par ablation laser Microfabrication Mesures de transport et de bruit.

 

Retour en haut