Service de Physique de l'Etat Condensé

9 sujets /SPEC/SPHYNX

Dernière mise à jour : 18-06-2018


 

"Machine learning" de modèles de suspensions hydrodynamiques de micro-nageurs par apprentissage de grandes masses de données expérimentales

SL-DRF-18-0902

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Hugues CHATE

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Hugues CHATE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087535

Directeur de thèse :

Hugues CHATE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087535

Labo : http://iramis.cea.fr/spec/SPHYNX/

Ces dix dernières années ont vu l'émergence d'études sur la "matière active" - composée de particules qui transforment l'énergie d'une source ambiante en mouvement - comme un sujet bien défini de physique statistique hors équilibre, principalement motivé par la nécessité de comprendre et reproduire le lien entre la motilité individuelle et collective. Les expériences sont encore relativement peu nombreuses, mais avec l'émergence du domaine, de plus en plus de données statistiques obtenues dans des conditions bien contrôlées deviennent disponibles. Ces grandes masses de données ("big data") ouvrent la possibilité non seulement de tester la pertinence quantitative de modèles existants, mais aussi de concevoir et d'appliquer des algorithmes d'apprentissage (machine learning) pour "découvrir" spontanément des modèles quantitativement fidèles. Ainsi on pourra atteindre un des objectifs finaux qui est d'obtenir explicitement les relations entre les paramètres de contrôle expérimentaux et les paramètres du modèle. Si la tâche semble difficile, elle est de première importance, car les modèles, en particulier les modèles continus, contiennent généralement de nombreux paramètres de sorte que cette correspondance n'est pas biunivoque.



Au cours de cette thèse, des données expérimentales à haut débit sur les suspensions bactériennes ("big data", provenant de collaborateurs à Shanghai et à Hong Kong) seront utilisées pour construire des modèles quantitatifs et élaborer des théories de synthèse.



Le travail de doctorat consistera à suivre en parallèle deux voies pour construire des liens théorie-expérience quantitatifs et directs. La première méthode, plus usuelle et déjà amorcée au laboratoire, consiste à construire des modèles par l'optimisation multidimensionnelle d'un ensemble de quantificateurs de cibles. La seconde, plus exploratoire et innovante, et donc plus difficile et risquée, consiste à construire "automatiquement" les modèles par des algorithmes d'apprentissage sur les données expérimentales. La comparaison des résultats obtenus par les deux voies sera particulièrement intéressante.



Les travaux analytiques nécessaires pour dériver des théories cinétiques et hydrodynamiques à partir des modèles simples de nageurs interactifs ainsi obtenus, y compris les termes stochastiques, seront développés en parallèle.

Dissipation, cascades et singularités en turbulence

SL-DRF-18-0272

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Bérengère DUBRULLE

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Directeur de thèse :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Page perso : http://iramis.cea.fr/Pisp/berengere.dubrulle/index.html

Labo : http://iramis.cea.fr/spec/sphynx/

La turbulence est un état atteint par la majeure partie des fluides dans des conditions “extrêmes” -fortes vitesses ou températures, grande taille du système-. Elle se manifeste dans de nombreux domaines industriels (turbines), aéronautiques (avions, fusées), géophysiques (atmosphère, océan) ou astrophysiques (étoiles, galaxies). Comprendre les phénomènes de turbulence constitue donc un enjeu scientifique, technologique et économique important. Soumis à une agitation mécanique, un fluide visqueux convertit le travail appliqué en chaleur via un processus complexe: son écoulement se structure en mouvements tourbillonnaires qui se ramifient sur plusieurs échelles allant de la taille du système (océan, lac, récipient,…) à l'échelle la plus fine, fonction de la viscosité. L’énergie injectée dans le fluide est finalement dissipée par effet de viscosité. Depuis près de 80 ans, on décrit ce processus par un modèle de cascade auto-similaire, du à Kolmogorov. Ce modèle sert de base à presque tous les modèles actuels de turbulence, et permet de reproduire extrêmement bien la majeure partie des grandes échelles des écoulements turbulents. Cependant, ce modèle devient de plus en plus mauvais au fur et à mesure que l'on descend vers les petites échelles, et ne permet pas de comprendre le comportement très intermittent de la dissipation d'énergie. Cela limite considérablement la modélisation des processus impliquant la turbulence à petite échelle, comme la combustion (problème pour simuler les moteurs) ou la condensation de gouttes (problème pour simuler la pluie en météo ou en climat).



Le but de la thèse est de tester une nouvelle description de la cascade d'énergie, basée sur l'hypothèse que la turbulence contient des singularités dans la limite de la viscosité tendant vers zéro. La quête des singularités dans les équations d’Euler ou de Navier-stokes représente un problème bien connu (cf. AMS Millenium Clay Prize), mais les récentes avancées, tant au niveau numérique qu’expérimental, remettent ce problème de nouveau d’actualité. En particulier, notre groupe a récemment mis en évidence, dans un écoulement turbulent de laboratoire, l'existence d'événements intenses de dissipation d'énergie non-visqueuse qui pourraient être associés aux singularités recherchées par les mathématiciens (Saw et al, Nature Communication 7, 12466 (2016)). Ces évènements ne sont pas décrits par le modèle de Kolmogorov, et pourraient servir de base à de nouvelles modélisations plus fidèles à petite échelle.



Nous proposons dans cette thèse une étude détaillée des processus de cascade et de dissipation d'énergie en utilisant le code SFEMaNS, qui sera testé par comparaisons avec les mesures expérimentales. Ce code utilise des éléments finis et une décomposition spectrale ainsi que des méthodes avancées de pénalisation, pour reproduire fidèlement l'expérience de laboratoire utilisée au SPEC.

Effets thermoélectriques dans les liquides ioniques et nanofluides

SL-DRF-18-0370

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Page perso : http://iramis.cea.fr/Pisp/sawako.nakamae/

Labo : http://iramis.cea.fr/spec/SPHYNX

Voir aussi : https://www.magenta-h2020.eu

Aujourd’hui, une grande part de l’énergie utilisée dans les processus industriels, entre 20 et 50%, est inutilement perdue en "chaleur fatale" sans être réutilisée. Jusqu’à 60-70% de l’énergie dans les moteurs à combustion interne est tout simplement relâchée dans l’atmosphère. Dans ce contexte, la récupération et la transformation en énergie électrique ou mécanique d’une partie de la chaleur fatale représente un enjeu important pour réduire la consommation globale.



Lorsqu'on chauffe un barreau conducteur à une extrémité, les électrons acquièrent de l'énergie cinétique et diffusent vers la partie froide. Les ions positifs par contre restent immobiles et il en résulte un déséquilibre de charge d'où l'apparition d'un champ électrique et d'un potentiel électrique dV proportionnel à la différence de température dT : dV=-SdT. Le facteur de proportionnalité S est appelé "coefficient Seebeck". Ceci fournit un schéma de principe à la conversion d'énergie thermique en énergie électrique (effet Seebeck) ou réciproquement (effet Peltier). Dans les deux cas, le rendement est une fonction croissante du "facteur de mérite" ZT=(S^2/Rho*Lambda)T où Rho et Lambda désignent respectivement les conductivités électrique et thermique du matériau. L'effet thermoélectrique dans des liquides conducteurs tels que les liquides ioniques, les solutions colloïdales chargées, etc., font l'objet de nombreuses études à cause de leur coefficient Seebeck très élevé. L’origine de la valeur élevée du coefficient Seebeck n’est pas encore complètement comprise. De possibles interprétations sont que le coefficient Seebeck croît avec l'entropie transportée par les ions et par les particules colloïdales chargées et que les macro-ions ou particules colloïdales chargées sont adsorbées à la surface des électrodes en créant un effet de double couche électrique (très élevé, à enlever).



Dans cette thèse, nous proposons l'étude expérimentale des propriétés thermoélectriques de fluides complexes (e.g., liquides ioniques, nanofluides (solutions colloïdales de nanoparticules chargées) afin de faire progresser notre compréhension sur l’origine physique de ce phénomène et d’identifier les nouveaux matériaux thermoélectriques dans le domaine du stockage de l'énergie (générateur thermoélectrique et supercondensateurs.). Le travail expérimental fera appel aux techniques de mesure du transport thermoélectrique et électrique, à la mesure de la charge thermoélectrique, à la caractérisation électrochimique (voltamétrie cyclique) ainsi que à l'acquisition automatisée des données et à l’interprétation des mesures.

Mesures optiques de la dissipation et des flux d’énergie dans des écoulements turbulents

SL-DRF-18-0872

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sébastien AUMAÎTRE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Sébastien AUMAÎTRE

CEA - DRF/IRAMIS/SPEC/SPHYNX

01 69 08 74 37

Directeur de thèse :

Sébastien AUMAÎTRE

CEA - DRF/IRAMIS/SPEC/SPHYNX

01 69 08 74 37

Page perso : http://iramis.cea.fr/Pisp/sebastien.aumaitre/

Labo : http://iramis.cea.fr/spec/sphynx/

L'objectif de cette thèse est d'étudier les fluctuations de puissances dans les écoulements turbulents. Les approches classiques ont déjà montré que la stationnarité des écoulements turbulents, qui impose l'égalité des puissances moyennes injectées à grande échelle et dissipée aux petites échelles, contraint le spectre des vitesses. Mais pour aller au-delà et expliquer la complexité et l'intermittence des écoulements turbulents, on peut s'intéresser aux propriétés statistiques des fluctuations des puissances mises en jeu dans les écoulements. Notamment on peut espérer mettre en évidence les corrélations entre puissance injectée et dissipée qu'impose la stationnarité et explorer leurs conséquences sur la structure de l’écoulement. Le défi expérimental sera d'estimer les fluctuations de puissance dissipée car cela nécessite une mesure fine des gradients de vitesse sur tout le volume de l'écoulement. Pour y parvenir, nous souhaiterions développer des mesures optiques de diffusion multiple couplées à l'acquisition d'image ultra-rapide. On complètera cette méthode innovante avec des mesures plus classiques afin de mesurer simultanément la puissance injectée et de chartériser la structure de l'écoulement.

Aspects physiques de la rupture des verres en corrosion sous contrainte

SL-DRF-18-0227

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Directeur de thèse :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : http://iramis.cea.fr/Pisp/cindy.rountree/

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : http://iramis.cea.fr/spec/

Pour les 3 années de thèse, un financement par l'ANR a été obtenu en 2017. Une décision sur les candidatures reçues pourra être donnée par la laboratoire au début du printemps 2018.



Ce projet de recherche fondamentale et appliquée est motivé par la nécessité de prédire, contrôler et d’améliorer la durabilité mécanique des verres sur le long terme. Les verres d’oxydes sont utilisés pour de nombreuses structures (panneaux de protection, satellites, cellules photovoltaïques…) soumises à d’amener un endommagement générant une apparition et une propagation lente de fissure (Corrosion Sous Contrainte, CSC).



Des études récentes [1-3] ont dévoilé une méthode très innovante pour améliorer la réponse en corrosion sous contrainte qui consiste à irradier électroniquement le matériau. Cependant, l’irradiation par électrons engendre des zones de démixtion. La question qu’on se propose de résoudre ici est de vérifier si l’apparition de zone de démixtion (APS, Amorphous Phase Separation) est bien responsable de l’amélioration comportement en corrosion sous contrainte, puis de l’étudier pour ensuite augmenter la tenue en service des verres.

Le doctorat devra étudier les propriétés physiques, mécaniques et Corrosion Sous Contrainte (CSC) des verres avec APS. L'objectif principal étant d'étudier in situ la propagation de la fissure par corrosion sous contrainte et l'analyser des surfaces de fracture dans des verres avec APS. Cela fournira des informations sur le comportement de la fissure en régime de CSC en fonction des différentes phases présentes dans les verres avec APS.



Cette méthode a déjà été utilisée dans nos équipes de recherche pour étudier la surface de fracture en fonction de la vitesse de propagation de la fissure dans de la silice pure (SiO2) et dans plusieurs échantillons SBN ("Si" "O" _"2" "-" "B" _"2" "O" _"3" "-N" "a" _"2" "O" ). L’utilisation de ces techniques pour l’étude du comportement en CSC de verres SBN APS aidera à comprendre comment la structure physique des verres modifie les propriétés mécaniques. Le doctorant sera donc amené à utiliser différents techniques expérimentaux tels que la spectroscopie Raman, la spectroscopie RMN, l'absorption des rayons X et de collaborer avec d’autres équipe de recherche : CEA, DEN et Université de Rennes 1. Le but étant de corréler les mécanismes de fissuration des verres avec d’autres propriétés macroscopiques et microscopiques.



Sur le plan logistique, le candidat sera co-encadré par C.L. Rountree au CEA et F. Célarié de l'Université de Rennes 1. Des essais de synthèse de verre et des essais préliminaires auront lieu à l'Université de Rennes 1 puis les tests de fissuration en CSC seront effectués au CEA. En conclusion, le thème de ce projet est la compréhension de la source des changements dans la propriété macroscopique, et en particulier comment contrôler les propriétés de fissuration en CSC en faisant varier la structure des verres via l’apparition de zone de démixtion (APS).



Publications

1) “SiO2-Na2O-B2O3 density: A comparison of experiments, simulations, and theory.”

M. Barlet, A. Kerrache, J-M Delaye, and C. L. Rountree, Journal of Non-Crystalline Solids. 382, 32, (2013)

2) "Hardness and Toughness of Sodium Borosilicate Glasses via Vicker's indentations”

M. Barlet, J-M. Delaye, T. Charpentier, M. Gennisson, D. Bonamy, T. Rouxel, C.L. Rountree

Journal of Non-Crystalline Solids. 417–418:66-69 (June 2015).

DOI:10.1016/j.jnoncrysol.2015.02.005

3) “From network depolymerization to stress corrosion cracking in sodium-borosilicate glasses: Effect of the chemical composition.”

M. Barlet, J.-M. Delaye, B. Boizot, D. Bonamy, R. Caraballo, S. Peuget and C. L. Rountree

Journal of Non-Crystalline Solids. 450:174-184 (15 October 2016).

4) “Role of evaporation rate on the particle organization and crack patterns obtained by drying a colloidal layer”

K. Piroird, V. Lazarus, G. Gauthier, A. Lesaine, D. Bonamy and C. L. Rountree

Europhysics Letters, 113:38002 (February 2016).

Compréhension de l’évolution de la ténacité des zones de démixtion avec des simulations de dynamique moléculaire

SL-DRF-18-0877

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Directeur de thèse :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : http://iramis.cea.fr/Pisp/cindy.rountree/

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : http://iramis.cea.fr/spec/index.php

Ce projet de recherche fondamentale et appliquée est motivé par la nécessité de prédire, contrôler et d’améliorer la durabilité mécanique des verres sur le long terme. Les verres d’oxydes sont utilisés pour de nombreuses structures (panneaux de protection, satellites, cellules photovoltaïques…) soumises à d’amener un endommagement générant une apparition et une propagation lente de fissure (Corrosion Sous Contrainte, CSC).



Des études récentes [1-3] ont dévoilé une méthode très innovante pour améliorer la réponse en corrosion sous contrainte qui consiste à irradier électroniquement le matériau. Cependant, l’irradiation par électrons engendre des zones de démixtion. La question qu’on se propose de résoudre ici est de vérifier si l’apparition de zone de démixtion (APS, Amorphous Phase Separation) est bien responsable de l’amélioration comportement en corrosion sous contrainte, puis de l’étudier pour ensuite augmenter la tenue en service des verres.



Le doctorat devra étudier les propriétés physiques, mécaniques et rupture des verres avec APS avec des simulations de dynamique moléculaire. L'objectif principal étant d'étudier les propriétés physiques et comment il change les propriétés de rupture dans des verres avec APS. Cela fournira des informations sur le comportement de la fissure en fonction des différentes phases présentes dans les verres avec APS.



Cette méthode a déjà été utilisée dans nos équipes de recherche pour étudier la fracture dynamique en fonction de la vitesse de propagation de la fissure dans de la silice pure (SiO2). L’utilisation de ces DM pour l’étude du comportement en CSC de verres SBN APS aidera à comprendre comment la structure physique des verres modifie les propriétés mécaniques. Le doctorant sera donc amené à utiliser différents systèmes de HPC (in-house et les supercalculateurs). Le but étant de corréler les mécanismes de fissuration des verres avec d’autres propriétés macroscopiques, mesoscopiques, et microscopiques.



Sur le plan logistique, le candidat sera encadré par C.L. Rountree au CEA. En conclusion, le thème de ce projet est la compréhension de la source des changements dans la propriété macroscopique, et en particulier comment contrôler les propriétés de fissuration en CSC en faisant varier la structure des verres via l’apparition de zone de démixtion (APS).

Etude du comportement en rupture de métamatériaux mécaniques dont la structure s'inspire de celle des os

SL-DRF-18-0887

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Daniel BONAMY

Date souhaitée pour le début de la thèse :

Contact :

Daniel BONAMY

CEA - DSM/IRAMIS/SPEC/SPHYNX

0169082114

Directeur de thèse :

Daniel BONAMY

CEA - DSM/IRAMIS/SPEC/SPHYNX

0169082114

Page perso : http://iramis.cea.fr/Pisp/2/daniel.bonamy.html

Labo : http://iramis.cea.fr/spec/SPHYNX/

La recherche de matériaux combinant légèreté et résistance mécanique est un domaine en plein essor, tiré, dans le domaine du transport notamment par la volonté de réduire les émissions de CO2 et de développer des véhicules économes en carburant. Des progrès importants ont été accomplis récemment ; les méta-matériaux ou matériaux architecturés offre dans ce contexte un potentiel considérable (e.g micro-lattice inventé au Caltech et produit par Boeing).



L’idée proposée ici vise à obtenir une nouvelle classe de matériaux en introduisant une porosité invariante d’échelle (fractale) s’inspirant de la structure osseuse. Il s’agira aussi de regarder comment une telle structure poreuse se répercute en terme de "risques", i.e. de fluctuations statistiques autour du comportement moyen. L’objectif final est d’arriver à des outils de rationalisation rigoureux permettant de définir un/des optimums en termes de légèreté, résistance à la fissuration, et risques (au sens défini ci-dessus).



Nos recherches précédentes nous ont permis de développer un formalisme nouveau, à l’interface entre mécanique des milieux continus et physique statistique, capable de prendre en compte explicitement (dans des cas simples) les inhomogénéités de structure et de prédire les aspects statistiques induits sur le comportement en rupture. Il s’agira d’adapter ce formalisme au cas de porosité fractale. L’étude s’appuiera sur des approches numériques de type "Random Lattice model" de complexité croissante. Une attention particulière sera portée sur une caractérisation propre des fluctuations statistiques autour du comportement en rupture moyen. L’approche sera ensuite qualifiée au travers d’expériences menées sur des échantillons de porosité fractale obtenues par impression additive, puis cassées au moyen d’un dispositif expérimental original développé dans notre laboratoire et donnant accès à la ténacité et ses fluctuations statistiques.



Ce sujet de thèse met en jeux des notions appartenant à la fois à la physique statistique, l’ingénierie mécanique et la science des matériaux. Le candidat aura donc l’opportunité de manipuler les outils théoriques et expérimentaux utilisés dans ces trois domaines. Une collaboration avec le laboratoire FAST à Orsay est prévue. Enfin, le caractère à la fois très fondamental et appliqué de cette recherche permettra au candidat de trouver à l’issue de la thèse des débouchés dans le monde académique et dans l’industrie.

Transitions supermagnétiques dans les super-réseaux de nanoparticules magnétiques

SL-DRF-18-0451

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

caroline RAEPSAET

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

caroline RAEPSAET

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169082423

Directeur de thèse :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Labo : https://iramis.cea.fr/spec/SPHYNX

Les interactions entre nanoparticules magnétiques entraînent une grande variété de comportements magnétiques dont l'étude à elle seule constitue un domaine émergent de la physique : le "supermagnétisme". Dans le cadre de ce projet de thèse, nous proposons une étude expérimentale des transitions supermagnétiques : verre de superspins (SSG) et superferromagnétisme (SFM) dipolaire, dans des supracristaux (SC) de nanoparticules (NP) de cobalt aux contraintes structurelles contrôlées.



Nous travaillons sur des supracristaux 3D, solides artificiels dont la brique élémentaire est non plus l'atome mais la nanoparticule, petit cristal de dimension nanométrique. Comme dans les solides atomiques, les nanoparticules sont organisées suivant une structure spécifique, dans notre cas un réseau cubique à faces centrées, qui présente une compacité importante. Régulièrement organisées sur les sites supracristallins, les nanoparticules peuvent donc interagir entre elles par interaction magnétique dipolaire. La simplicité géométrique de ces supracristaux en fait un système "réel" simple et riche d’enseignements, qui peut être modélisé numériquement et théoriquement. Les échantillons de supracristaux sont préparés par le laboratoire MONARIS, UPMC/CNRS, dans des conditions de cristallinité (des NP et des SC) et de morphologie contrôlées.



Le sujet de cette thèse concerne l’étude expérimentale de l’évolution de l’état magnétique de supracristaux de nanoparticules de cobalt. Nous travaillerons à partir de deux méthodes de mesures : une méthode globale par magnétomètrie à SQUID (Superconducting Quantum Interference Device) et une méthode microscopique par sonde de Hall de taille micrométrique. Cette deuxième méthode permet de mesurer le champ magnétique local dans des domaines de taille micrométrique, donc comparables à celle d’un supracristal isolé, et peuvent être sensibles au retournement d’aimantation d'un petit nombre de nanoparticules. A l’aide de ces deux méthodes, nous espérons pouvoir détecter une transition SSG/SFM dans un supracristal unique monocristallin, preuve expérimentale décisive de l’existence du SFM dipolaire.



Le principal enjeu de ce travail concerne la physico-chimie fondamentale : mise en évidence d’un état superferromagnétique dipolaire prévu par la théorie mais non encore observé expérimentalement dans les systèmes 3D. Le travail expérimental effectué dans le cadre de la thèse se fera donc en étroite collaboration avec les théoriciens, pour interpréter les résultats expérimentaux mais également pour valider les modèles développés. Enfin l’utilisation de ces supracristaux intéresse le domaine médical, le stockage de données…



Les expériences projetées feront intervenir des connaissances en magnétisme des nanoparticules, des techniques de mesures magnétiques (magnétométrie ultra-sensible intégrant des mesures à faible niveau) et de cryogénie, des analyses statistiques et l'interprétation de résultats expérimentaux. Les candidats motivés auront la possibilité de participer à la synthèse des NP, des SC et à leurs caractérisations structurales (SAXS, TEM, MEB, etc.).

Matière Active: coupler les synchronisations interne et externe

SL-DRF-18-1010

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Hugues CHATE

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Hugues CHATE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087535

Directeur de thèse :

Hugues CHATE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087535

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=chate

Labo : http://iramis.cea.fr/spec/SPHYNX/

La matière active fait référence aux propriétés collectives des entités capables de transformer de l'énergie en travail mécanique, comme le déplacement. La majeure partie du monde vivant et de plus en plus de systèmes artificiels appartiennent à ce domaine. Les groupes d'animaux, les tissus, les colonies de bactéries sont des illustrations de matière active. On remarque que la matière active se rencontre à toutes les échelles. Aujourd'hui, l'humanité confectionne principalement des micronageurs. Cependant, elle nourrit l'espoir de fabriquer des matériaux capables de s'auto-organiser de façon dynamique ou de profiter de l'effet de masse pour effectuer des tâches de façon performante.



Les mouvements collectifs sont un axe majeur dans l'étude de la matière active. Les modèles simples de mouvements collectifs peuvent être représentés par des systèmes où les degrés de libertés essaient de se synchroniser: par exemple, la direction dans laquelle les particules se déplacent pour un groupe de particules. Cependant il existe beaucoup de systèmes, tels que des organismes vivants, présentant des degrés de libertés internes qui vont alors essayer de se synchroniser. Cette synchronisation va alors influencer le mouvement à son tour. Par exemple, cela est observé expérimentalement dans le cas des myxobactéries. Elles renversent spontanément leur direction de déplacement après un certain temps. Dans le cas d'une forte concentration de bactéries, on voit apparaître des zones où de nombreuses bactéries synchronisent leur changement de direction. Cela engendre donc des effets collectifs nouveaux.



Le but de ce projet est de proposer un cadre théorique général prenant en compte le couplage entre synchronisation des degrés de libertés internes et direction du mouvement. Il est attendu des résultats importants sur les micro-organismes tels que les bactéries et sur l'auto-organisation des particules actives synthétiques à l'échelle microscopique et nanoscopique.

• Matière molle et fluides complexes

• Physique du solide, surfaces et interfaces

• Physique théorique

 

Retour en haut