Service de Physique de l'Etat Condensé

Dernière mise à jour : 22-01-2018

3 sujets /SPEC/GMT

 

Courants à haute polarisation de spin dans des jonctions magnétiques à base des molécules organiques

SL-DRF-18-0443

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Alexander SMOGUNOV

Date souhaitée pour le début de la thèse : 01-05-2018

Contact :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Directeur de thèse :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Page perso : http://iramis.cea.fr/Pisp/alexander.smogunov/

Labo : http://iramis.cea.fr/spec/GMT/

Nous proposons une thèse dédiée à l'étude théorique du transport électronique polarisé en spin dans des jonctions constituées de molécules organiques connectées à deux électrodes ferromagnétiques – le sujet est d’un très grand intérêt dans le domaine de la spintronique organique/moléculaire [1]. Un accent particulier sera mis sur la possibilité d'optimiser et de piloter le degré de polarisation de spin du courant électrique et des propriétés de magnétorésistance – des concepts très importants en spintronique – par un choix judicieux de molécules ou par différents facteurs externes tels que la température (du fait de l'interaction entre électrons et vibrations moléculaires), le champ électrique (grille électrostatique) ou la tension mécanique sur la molécule exercée par des électrodes. L’idée principale, est d’exploiter le principe de symétrie des orbitales moléculaires – argument que nous avons avancé récemment [2] – qui peut permettre de filtrer le spin du courant électrique de manière efficace. Des méthodes ab initio basées sur la DFT (Théorie de la Fonctionnelle de la Densité) implémentée dans le code Quantum ESPRESSO [3], en combinaison avec des calculs de transport modèles, basés sur le formalisme de Keldysh, seront utilisés au cours de ce projet. De nouvelles fonctionnalités comme, par exemple, le couplage électron-phonon sur la molécule ou le transport thermique, seront implémentés dans les codes QE et le transport électronique.



[1] A. R. Rocha et al., Towards molecular spintronics, Nature Mater. 4, 335(2005); S. Sanvito,

Molecular spintronics, Chem. Soc. Rev. 40, 3336 (2011); V. Alek Dediu et al., Spin routes in

organic semiconductors, Nature Mater. 8, 707 (2009);

[2] A. Smogunov and Y. J. Dappe, Symmetry-Derived Half-Metallicity in Atomic and Molecular

Junctions, Nano Lett. 15, 3552 (2015);

[3] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for

quantum simulations of materials, Phys.: Condens. Matter 21, 395502 (2009).

Etude théorique de l’anisotropie magnétique de systèmes hybrides pour la spintronique moléculaire

SL-DRF-18-0045

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Cyrille BARRETEAU

Date souhaitée pour le début de la thèse : 01-12-2017

Contact :

Cyrille BARRETEAU

CEA - DRF/IRAMIS/SPEC/GMT

+33(0)1 69 08 38 56

Directeur de thèse :

Cyrille BARRETEAU

CEA - DRF/IRAMIS/SPEC/GMT

+33(0)1 69 08 38 56

Page perso : http://iramis.cea.fr/Pisp/cyrille.barreteau/

Labo : http://iramis.cea.fr/spec/GMT/

Le nanomagnétisme est un domaine très fécond à la frontière de nombreuses disciplines. Il consiste en l’étude (et l’utilisation) du magnétisme de systèmes de taille nanométrique. Les propriétés magnétiques des nano-objets sont en générale fortement modifiées par rapport à leur équivalent volumique. L’enjeu est d’arriver à contrôler/manipuler leur propriétés magnétiques. Une des propriétés fondamentales des matériaux magnétiques est leur anisotropie qui est caractérisée par des directions d’aimantation préférentielles mais également par des propriétés de transport électronique qui dépendent de l’angle relatif entre l’aimantation et le courant électrique. Récemment il a été démontré que l’interaction d’une couche mince magnétique avec des molécules pouvait modifier fortement l’anisotropie de cette couche du fait de l’hybridation entre la molécule et les atomes de la surface du substrat. De même des expériences récentes ont mis en évidence des anisotropies de magnétorésistance (AMR : Anisotropic Magneto-Resistance) très fortes lorsque dans des constrictions de nickel connectées par une molécule de benzène.

Au cours de cette thèse nous nous proposons d’étudier à l’aide de méthodes de calcul de structure électronique ab-initio et/ou liaisons fortes l’anisotropie magnétique dans des systèmes hybrides substrat magnétique/molécule. On considéra dans un premier temps des couches de cobalt et/ou fer en interaction avec des molécules simples. Ensuite des molécules plus complexes seront considérées. L’objectif final étant de trouver les systèmes molécule/substrat qui présentent les propriétés optimales en vue de possibles applications.

Transport thermoélectrique hors-équilibre dans des conducteurs quantiques

SL-DRF-18-0459

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Geneviève FLEURY

Alexander SMOGUNOV

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geneviève FLEURY

CEA - DRF/IRAMIS/SPEC/GMT

0169087347

Directeur de thèse :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Page perso : http://iramis.cea.fr/spec/Pisp/genevieve.fleury/

Labo : http://iramis.cea.fr/spec/GMT/

Ce sujet bénéficie aujourd'hui d'un financement CEA, comme sujet "phare". La sélection des candidatures reçues se fera au début du printemps 2018.



Les effets thermoélectriques Seebeck et Peltier permettent la conversion d'énergie thermique en énergie électrique et vice-versa. Ainsi l'on peut avec l'effet Seebeck récupérer de la chaleur perdue pour produire de l'électricité. A l'inverse, il est possible en utilisant l'effet Peltier de refroidir localement un dispositif en exploitant de la puissance électrique. Pendant longtemps, ces effets thermoélectriques n'ont montré que des rendements très faibles et ils n'ont ainsi trouvé que des applications marginales. Mais depuis peu, les règles du jeu ont changé : la découverte de nouveaux matériaux prometteurs, les progrès en nanofabrication et la volonté grandissante de répondre aux impératifs d'économie d'énergie ont relancé la recherche.



Nous proposons dans cette thèse théorique d'étudier analytiquement et numériquement la conversion thermoélectrique dans des systèmes mésocopiques de basse dimension. Nous nous intéresserons à un régime loin de l'équilibre où des effets thermoélectriques importants sont attendus. Nous considérerons en particulier des systèmes soumis à un forçage dynamique. D'un point de vue méthodologique, nous utiliserons les outils numériques et le formalisme analytique développés au CEA-Grenoble (groupe de Xavier Waintal) pour l'étude du transport quantique résolu en temps (voir https://kwant-project.org/). Nous l'adapterons au cas du transport thermoélectrique et l'appliquerons sur divers systèmes (boîte quantique, contact ponctuel quantique, nanofils…).

• Physique du solide, surfaces et interfaces

• Physique mésoscopique

 

Retour en haut