Service de Physique de l'Etat Condensé

PDF

Photo-électrolyse de l’eau assistée par une couche pérovkite ferroélectrique
Water photolectrolysis assisted by a perovskite ferroelectric layer

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

01-05-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MAGNAN Helene
+33 1 69 08 94 04

Résumé/Summary

Des photo-anodes dédiées à la photo-électrolyse de l’eau seront réalisées et caractérisées. Il s’agira d’hétérojonctions d’oxydes élaborées par épitaxie par jets moléculaires dont une couche sera ferroélectrique et polarisée électriquement. Les effets de la polarisation électrique sur les propriétés de photo-électrolyse seront étudiés.
Thin epitaxial films dedicated to water photolectrolysis will be prepared by atomic oxygen plasma assisted molecular beam epitaxy and characterized. We will study oxide heterojunction containing a polarized ferroelectric layer. We will study the influence of electrical polarization on the photoanode efficiency.

Sujet détaillé/Full description

La photo-électrolyse de l’eau permet la production directe d’hydrogène en utilisant l’énergie solaire. L’hydrogène, en tant que vecteur d’énergie propre et décarbonné, est une piste crédible pour résoudre la paradoxale nécessité d’une augmentation de la production énergétique et de la réduction des gaz à effets de serre. Les photo-anodes les plus performantes sont obtenues avec des oxydes métalliques. Toutefois, à ce jour, aucun oxyde semi-conducteur simple ne réunit toutes les propriétés de photo-anode nécessaires pour permettre une production raisonnable d’hydrogène par ce procédé. Les anodes permettant une bonne absorption du spectre lumineux souffrent d’un taux de recombinaison rédhibitoire. Il faut considérer des architectures de matériaux plus complexes afin d’améliorer les propriétés des électrodes simples. Dans cette étude, nous souhaitons combiner une couche d’oxyde efficace en tant que photo-anode avec une couche d’oxyde pérovskite ferroélectrique, fournissant une polarisation électrique interne permettant d’améliorer les propriétés de transport.
Dans le cadre du stage proposé, on s’attachera, dans un premier temps, à déterminer les conditions de croissance d’hétérojonctions monocristallines de type Fe2O3 / BaTiO3 et TiO2 /BaTiO3. Les dépôts seront réalisés sur des substrats adaptés et conducteurs (Pt(001) et Pt(111)), et seront déposés par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique, une technique parfaitement maitrisée au laboratoire. La structure cristalline sera déterminée in situ et en temps réel grâce à la diffraction d’électrons rapides (RHEED). La stœchiométrie des films sera déterminée par spectroscopie d’électrons Auger et par photoémission (XPS). Les propriétés de photo-électrolyse (photo-courant, rendement) seront mesurées en lumière blanche et en lumière monochromatique. L’efficacité de la photo-anode sera analysée en fonction de la nature de l’heterojonction et de l’orientation cristalline. Nous étudierons également les effets de la polarisation électrique (amplitude, orientation) de la couche ferrolectrique sur les propriétés de photo-électrolyse.
Le (la) candidat(e) abordera les techniques d’ultra-vide associées à la croissance par épitaxie par jets moléculaires (dépôt de couches minces, caractérisations in situ) ainsi que la caractérisation électrochimique de photo-anodes. Le caractère multi-disciplinaire du sujet sera très enrichissant pour le (la) candidat(e). Les couches élaborées durant ce stage s’inscrivent dans le cadre de recherches à long terme dans le groupe et d’un projet ANR (photo-pot) qui vient d’être accepté. Ce sujet pourra être prolongé par une thèse.
Thin epitaxial films dedicated to water photolectrolysis will be prepared by atomic oxygen plasma assisted molecular beam epitaxy and characterized. We will study oxide heterojunction containing a polarized ferroelectric layer. We will study the influence of electrical polarization (intensity and orientation) on the photoanode efficiency.
Solar energy has the potential to satisfy the increasing global energy demand. Semiconductors hold great promise for high-efficiency solar water splitting (water photo electrolysis). Indeed, they may be used for solar energy harvesting and/or chemical energy storage. Since the first demonstration using TiO2 as a photoanode, a large number of metal oxides were studied for this application. However, all these simple oxides present some limiting factors (such as electron - hole recombination and position of the conduction band edge below the H+/H2 redox potential) which can explain a relatively low efficiency. Recently, we have shown in our group that the efficiency of solar water splitting can be strongly improved by using a ferroelectric layer (BaTiO3) as photoanode [1].
In the present internship, we propose to prepare and study oxide heterojunctions (Fe2O3 / BaTiO3 and TiO2 /BaTiO3) grown by Atomic Oxygen plasma assisted Molecular Beam Epitaxy. The introduction of the perovskite ferroelectric layer is expected to improve the photoanode efficiency of Fe2O3 or TiO2 thanks to a better charge transport. For all samples, we will determine the crystallographic structure by in situ RHEED and the electronic structure by in situ XPS. The photoanode efficiency as a function of the nature of heterojunction and of its crystallographic orientation. Moreover the influence of ferroelectric polarization vector (direction and strength) will be also measured.

[1] M. Rioult, S. Datta, D. Stanescu, S. Stanescu, R. Belkhou, F. Maccherozzi, H. Magnan, A. Barbier, Appl. Phys. Lett 107, 103901 (2015)

Mots clés/Keywords

Couches minces, épitaxie, caractérisation, photo-anode, photo-électrolyse, cellule solaire
epitaxy, thin films, photoelectrolysis, solar fuel cell

Compétences/Skills

MBE, spectroscopies, photolectrolyse
MBE, Spectroscopy, photoelectrolysis
PDF

Etude de cellules cancéreuses et de bactéries à l'aide d'une biopuce à base de capteurs GMR
Development of lab on chip for the study of cancerous cells and/or bacterias

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

08-03-2018

Durée

3 mois

Poursuite possible en thèse

oui

Contact

JASMIN-LEBRAS Guenaelle
+33 1 69 08 65 35

Résumé/Summary

Le développement de biopuces à base de capteurs GMR est un projet de biotechnologie pour la santé pour l’innovation diagnostique et thérapeutique. Il est basé sur la combinaison d’un marquage spécifique des anticorps avec des nanoparticules magnétiques et leur détection dynamique avec des capteurs . Le véritable défi est d’obtenir un outil capable de détecter rapidement, de façon simple, sensible et spécifique, différents objets biologiques rares en réponse à un besoin d’urgence de diagnostic clinique et/ou de biosécurité
The development of Lab on chips based on GMR sensors is a project of biotechnology for the health, for the diagnostic and therapeutic innovation. It is based on the combination of magnetic particles labeled with the specific antibody of the biological target and their dynamic detection with sensors. The real challenge is to obtain a lab on chip able to detect quickly, in a simple, sensitive and specific way, very low quantitty of biological objects , in answer to an emergency need for clinical diagnosis and/or for biosafety.

Sujet détaillé/Full description

Le projet repose sur le principe fondamental des capteurs GMR (capteurs à magnétorésistance géante) qui permettent une détection locale de très faibles champs magnétiques. En attachant des billes magnétiques à des objets biologiques (cellules, bactéries, protéines), il est possible de détecter un à un ces objets labellisés lors de leur passage au-dessus du capteur.
Au cours de son stage, en collaboration avec une doctorante, l'étudiant optimisera et testera la biopuce constituée de capteurs GMR fabriqués au LNO et d'un canal microfluidique qu'il développera en salle blanche dont la hauteur varie en fonction de la taille des objets biologiques étudiés. Le marquage des objets biologiques a lieu au LERI(Laboratoire d'Etudes et de Recherches en Immunoanalyse). Au sein de ce laboratoire avec lequel nous collaborons, ll greffera sur des billes magnétiques des anticorps spécifiques de la cible à détecter et les incubera avec l’échantillon biologique d’intérêt. L’échantillon est ensuite injecté dans le canal microfluidique. Il optimisera le dispositif, ainsi que les différents tests nécessaires, pour distinguer de manière spécifique ces objets biologiques (cellules cancéreuses et/ou bactéries) et maîtriser les paramètres mis en jeu. L'étudiant devra également comprendre et analyser les résultats obtenus à l'aide de simulations effectuées avec des logiciels de code ou des programmes existants au laboratoire.
In this project, we are focusing on the detection of biological objects by using GMR sensors which allow a local detection of very weak magnetic fields.
The principle is to incorporate magnetic particles labeled with the proper specific antibody in a solution containing the biological fluid and to inject the solution in a microfluidic channel where sensitive magnetic sensors are placed underneath. A perpendicular magnetic field is magnetizing the magnetic particles and the stray dipolar field of the magnetic particles is detected. The signal produced by a labeled cell is much larger than magnetic nanoparticles and hence, it is possible to count single cells During the training period, in collaboration with a PhD-student, the student will optimize and will test the lab on chip integrating GMR sensors and a microfluidic channel made in clean room for which height varies according to the size of the studied biological objects. In collaboration with the biologists of the LERI Laboratoire d'Etudes et de Recherches en Immunoanalyse), he will label magnetic particles with the specific antibody of the biological target to detect. He will optimize the lab on chip as well as the various tests necessary to distinguish in a specific way these biological objects (cancer cells and/or bacteria) and to control the different involved parameters. He will analyze the results by developing simulations.

Mots clés/Keywords

Spintronique, microfluidique, biotechnologie, électronique
Spintronic microfluidic biotechnology

Compétences/Skills

Techniques de salle blanche, technique de dépôt par MBE, mesures magnétiques. Préparation d'échantillons biologiques,
Cleaning room technicals. , MBE technical, electronic. magnetic measurements

Logiciels

Mathematica, pascal ou fortran.
PDF

Les iridates : une nouvelle famille d'oxydes (base iridium) aux propriétés remarquables

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30-03-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

MOUSSY Jean-Baptiste
+33 1 69 08 72 17

Résumé/Summary

Nous proposons dans ce stage de réaliser la croissance cristalline de nouveaux composés de la famille des iridates (ex: Sr3Ir2O7) sous la forme de monocristaux et de films minces afin d’explorer leurs propriétés électroniques (nouvelles phases topologiques, nouveaux isolants de Mott).

Sujet détaillé/Full description

Des cristaux du composé pur Sr3Ir2O7 seront synthétisés et des dopages en électrons seront réalisés grâce à des substitutions cationiques (Sr/La). Les cristaux seront ensuite caractérisés par diffraction X et mesures magnétiques . Pour les films minces, nous utiliserons une nouvelle technique de croissance sous ultra-vide développée au laboratoire : l'ablation laser pulsée (PLD). Un soin tout particulier sera porté sur les caractérisations structurales et physiques des films réalisés grâce aux techniques présentes au laboratoire : diffraction d'électrons (RHEED), spectroscopie de photoémission (XPS/UPS), microscopie en champ proche (AFM), magnétisme (SQUID, VSM). Les propriétés électroniques des échantillons seront ensuite étudiées en collaboration avec le LPS-Orsay, notamment l'effet Hall de spin quantique, qui correspond à la signature d'un état topologique.
PDF

Nouveaux composants spintroniques à base de matériaux anti-ferromagnétiques

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30-03-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

MOUSSY Jean-Baptiste
+33 1 69 08 72 17

Résumé/Summary

Ce stage vise à démontrer que des parois de domaines anti-ferromagnétiques (AF) peuvent être déplacées et détectées dans des films minces isolants, permettant ainsi d'envisager leur utilisation comme éléments mémoires de haute densité pour la spintronique.

Sujet détaillé/Full description

Dans un premier temps, la croissance cristalline de films minces d'oxydes anti-ferromagnétiques (AF) sera réalisée grâce à une expérience d'ablation laser pulsée (PLD). La visualisation des parois de domaines AF sera ensuite obtenue par la technique d'imagerie par génération de seconde harmonique (SHG) développée récemment au laboratoire. La SHG est en effet l'une des rares techniques à permettre l'observation des domaines AF grâce à l'interaction de la lumière avec des cristaux non centro-symétriques. Ensuite, l'ordre AF sera manipulé par des courants de spin générés via un effet d'interface nouvellement découvert, basé sur le couplage spin-orbite et permettant un échange de moment angulaire entre les électrons de conduction d'un métal de matériau lourd et le film isolant AF en contact.
PDF

Mesure du spectre d'excitation d'un skyrmion individuel
Measurement of the excitation spectrum of an individual skyrmion

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

DE-LOUBENS Grégoire
+33 1 69 08 71 60

Résumé/Summary

Les skyrmions magnétiques sont des singularités topologiques intéressantes pour le stockage et le transfert d'information. Le but de ce stage est d'utiliser une technique expérimentale de champ proche unique pour étudier la dynamique d'un skyrmion individuel stabilisé dans un nano-disque magnétique.
Magnetic skyrmions are topological singularities of interest for information storage and processing. The goal of this internship will be to use a unique near field microscopy technique to study the dynamics of a single skyrmion stabilized in a magnetic nano-disk.

Sujet détaillé/Full description

Les skyrmions sont des singularités topologiques qui peuvent apparaître dans certains matériaux magnétiques où une interaction spécifique, dite de "Dzyaloshinskii-Moriya" (DM), est suffisamment intense pour forcer un état d'équilibre de l'aimantation non colinéaire. Ces objets topologiques sont des candidats intéressants pour le stockage et le transfert d'information, car ils sont naturellement couplés à la spintronique [1]. Néanmoins, leur stabilité et leur dynamique restent à être étudiées. Récemment, il a été démontré que de telles structures, de taille typique quelques dizaines de nanomètres, pouvaient être stabilisées à température ambiante, notamment dans des nano-disques fabriqués à partir de multicouches présentant une forte interaction DM [2]. Leur spectre d'excitation a également été calculé [3], mais jamais encore mesuré. Le but de ce stage est d'utiliser un microscope de force par résonance magnétique (MRFM) disponible au laboratoire pour étudier la dynamique d'un skyrmion unique. Cette technique de champ proche, qui utilise une sonde magnétique placée à l'extrémité d'un levier mécanique très souple pour détecter la résonance magnétique est d'une grande sensibilité, puisqu'elle a déjà permis d'étudier la dynamique d'un vortex dans un nano-disque magnétique [4].

Ce travail de stage pourra se poursuivre par une thèse dans le laboratoire d'accueil, en co-tutelle avec l'unité mixte CNRS/Thales, dans le cadre du projet ANR TOPSKY.

[1] J. Sampaio, et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology 8, 839-844 (2013)
[2] C. Moreau-Luchaire, et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature nanotechnology 11, 444-448 (2016)
[3] J.-V. Kim, et al., Breathing modes of confined skyrmions in ultrathin magnetic dots, Phys. Rev. B 90, 064410 (2014)
[4] G. de Loubens, et al., Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk, Phys. Rev. Lett. 102, 177602 (2009)
Magnetic skyrmions are topological singularities appearing in magnetic materials with strong Dzyaloshinskii-Moriya interaction (DMI), which favor non-colinear configurations of the magnetization. These topological objects are interesting candidates for information storage and processing, as they are naturally coupled to spintronics [1]. Nevertheless, their stability and dynamics still have to be investigated. Recently it has been demonstrated that such structures having typical size of a few tens of nanometers could be stabilized at room temperature in nanodisks patterned from multilayers with strong DMI [2]. Their excitation spectrum has also been calculated [3], but never measured. The goal of this internship is to use a magnetic resonance force microscope (MRFM) to study the dynamics of an individual skyrmion. This near field microscopy technique uses a magnetic probe attached at the end of a very soft mechanical cantilever to detect magnetic resonance in nanostructures [4].

This master thesis can be followed by a PhD thesis, in collaboration with the CNRS/Thales laboratory, in the frame of the ANR project TOPSKY.

[1] J. Sampaio, et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology 8, 839-844 (2013)
[2] C. Moreau-Luchaire, et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature nanotechnology 11, 444-448 (2016)
[3] J.-V. Kim, et al., Breathing modes of confined skyrmions in ultrathin magnetic dots, Phys. Rev. B 90, 064410 (2014)
[4] G. de Loubens, et al., Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk, Phys. Rev. Lett. 102, 177602 (2009)

Mots clés/Keywords

Nanomagnétisme, skyrmion, résonance magnétique, spintronique
Nanomagnétism, skyrmion, magnetic resonance, spintronics
PDF

Injection de spin dans des interfaces bidimensionnelles d'électrons
Spin injection in 2-D interface states

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

28-03-2018

Durée

5 mois

Poursuite possible en thèse

oui

Contact

VIRET Michel
+33 1 69 08 71 60

Résumé/Summary

Le but du stage est d'injecter des spins dans des systèmes électroniques bidimensionnels à fort couplage spin-orbite afin d'étudier la conversion spin/charge.
The subject aims at studying the spin to charge conversion by 2-D interface states with strong spin-orbit coupling.

Sujet détaillé/Full description

Spintronics relies on the discrimination of spin up and down carriers originally generated by charge currents in metallic ferromagnets. Recent developments aim to get rid of this source of dissipation by manipulating pure spin currents without their charge counterpart. One convenient way of achieving this is to use the spin-orbit coupling (SOC) interaction in a non-magnetic heavy metal like Pt. The interaction relies on a preferential directional scattering of electrons of different spins resulting in the generation of a spin current transverse to a charge current called the Spin Hall Effect (SHE). As signals should eventually be read as voltages, it is important to efficiently convert spin into charge, which can also be done using the inverse Spin Hall effect. Very recently, another SOC effect based on the Rashba interaction was shown to be more efficient. The effect stems from the joint action of the SOC and built-in electric potentials in two-dimensional electron gases existing at surfaces, interfaces or semiconductor quantum wells. Lastly, similar physics is at play in topological insulators, materials which are insulating in the bulk but conducting at their surfaces due to broken symmetry inducing topological states.
The Inverse (Rashba) Edelstein Effect (IEE) was first demonstrated in 2013 in the Ag/Bi interface. We have confirmed the origin of this effect and also studied other 2-D gases like that at the LaAlO3/SrTiO3 interface. A 2D electron liquid appears between these two insulators when LaAlO3 is epitaxially grown on TiO2-terminated SrTiO3 along the [001] direction. Electrons are transferred to the interface to compensate for the polar discontinuity present between the two materials. A strong Rashba spin-orbit interaction also results from the breaking of inversion symmetry, whose strength can be tuned by applying an external electric field. Several measurements remain to be carried out in this system including in-plane dependences of the Rashba coefficient, tunneling of a pure spin current through the LaAlO3 barrier and the influence of the ferroelectric instability in doped SrTiO3. Some other systems can also be envisioned like interface states in topological insulators like the irridates SrIr2O4.
The ‘stage’ proposed here will consist in measuring these properties as spins are injected by ferromagnetic resonance and laser induced ultra-fast excitation of a ferromagnet. Both techniques are mastered in our laboratory and the latter is very promising as it can give very interesting information concerning time-resolved injection and spin lifetime. The LAO/STO samples come from the University of Geneva while irridates are synthesized in our group by Pulsed Laser Deposition.
Spintronics relies on the discrimination of spin up and down carriers originally generated by charge currents in metallic ferromagnets. Recent developments aim to get rid of this source of dissipation by manipulating pure spin currents without their charge counterpart. One convenient way of achieving this is to use the spin-orbit coupling (SOC) interaction in a non-magnetic heavy metal like Pt. The interaction relies on a preferential directional scattering of electrons of different spins resulting in the generation of a spin current transverse to a charge current called the Spin Hall Effect (SHE). As signals should eventually be read as voltages, it is important to efficiently convert spin into charge, which can also be done using the inverse Spin Hall effect. Very recently, another SOC effect based on the Rashba interaction was shown to be more efficient. The effect stems from the joint action of the SOC and built-in electric potentials in two-dimensional electron gases existing at surfaces, interfaces or semiconductor quantum wells. Lastly, similar physics is at play in topological insulators, materials which are insulating in the bulk but conducting at their surfaces due to broken symmetry inducing topological states.
The Inverse (Rashba) Edelstein Effect (IEE) was first demonstrated in 2013 in the Ag/Bi interface. We have confirmed the origin of this effect and also studied other 2-D gases like that at the LaAlO3/SrTiO3 interface. A 2D electron liquid appears between these two insulators when LaAlO3 is epitaxially grown on TiO2-terminated SrTiO3 along the [001] direction. Electrons are transferred to the interface to compensate for the polar discontinuity present between the two materials. A strong Rashba spin-orbit interaction also results from the breaking of inversion symmetry, whose strength can be tuned by applying an external electric field. Several measurements remain to be carried out in this system including in-plane dependences of the Rashba coefficient, tunneling of a pure spin current through the LaAlO3 barrier and the influence of the ferroelectric instability in doped SrTiO3. Some other systems can also be envisioned like interface states in topological insulators like the irridates SrIr2O4.
The ‘stage’ proposed here will consist in measuring these properties as spins are injected by ferromagnetic resonance and laser induced ultra-fast excitation of a ferromagnet. Both techniques are mastered in our laboratory and the latter is very promising as it can give very interesting information concerning time-resolved injection and spin lifetime. The LAO/STO samples come from the University of Geneva while irridates are synthesized in our group by Pulsed Laser Deposition.

Mots clés/Keywords

spintronique

Compétences/Skills

Pulsed laser deposition (PLD). Structural characterizations (X-ray and electron diffraction), near field microscopies (AFM). Optical magnetic imaging with second harmonics (SHG). Lasers (Nd-YAG, femto-second Ti:Al2O3 ). Magnetism (SQUID, VSM). Electronic transport measurements.

Logiciels

Python, origin.
PDF

Etude de microstructures multiferroïques encapsulées de type ferrite - pérovskite
Study of embedded ferrite – perovskite type multiferroic microstructures

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

5 mois

Poursuite possible en thèse

oui

Contact

BARBIER Antoine
+33 1 69 08 39 23

Résumé/Summary

L'objectif de ce stage est de réaliser et de caractériser des inclusions de ferrite (CoFe2O4) ferrimagnétique dans une matrice de perovskite (BaTiO3) ferroélectrique. Nous nous appuierons sur l'expertise acquise ces dernières années au laboratoire dans la réalisation par épitaxie par jets moléculaires de couches minces de ces mêmes composés. L’étude sera complétée par des méthodes de pointe accessibles en rayonnement synchrotron.
The objective of the internship is to realize and characterize ferrimagnetic ferrite inclusions (CoFe2O4) in a ferroelectric perovskite matrix (BaTiO3). The realization of the samples will benefit from the expertise gained in recent years, in the laboratory, in growing thin films of such compounds by molecular beam epitaxy. The study will be completed by advanced methods using synchrotron radiation.

Sujet détaillé/Full description

Le couplage magnéto-électrique entre des oxydes ferroélectriques et ferro-, ferri ou antiferro- magnétiques suscite un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion d’énergie. La maitrise de ce type d’oxydes sous forme de nanostructures encapsulées est aujourd’hui particulièrement pertinente. Dans ces systèmes il y a une forte interdépendance des paramètres magnétiques, ferroélectriques et structuraux. Une étude pertinente doit donc aborder l’ensemble de ces aspects.

Le BaTiO3 est l’un des matériaux ferroélectriques de référence et appartient à la famille des oxydes de structure pérovskite. La ferrite de cobalt a de nombreux atouts comme une température de Curie élevée et une forte constante de magnétostriction. L’inclusion de microstructures de CoFe2O4 dans un film de BaTiO3 est un système très bien adapté à la compréhension des mécanismes sous-tendant les propriétés multiferroïques.
La croissance en films minces de ces matériaux est déjà maitrisée au laboratoire. Les dépôts seront réalisés par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique. Dans le cadre du stage proposé on s’attachera à déterminer les conditions de réalisation d’inclusions encapsulées. Ces échantillons seront étudiés ensuite sur les lignes de lumière DIFFABS et HERMES du synchrotron SOLEIL pour déterminer respectivement les propriétés cristallines, la cartographie chimique ainsi que l’ordre magnétique et ferroélectrique.

Les couches élaborées durant ce stage s’inscrivent dans le cadre de recherches à long terme. Ce sujet pourra être prolongé par une thèse. Le stage, tout comme le sujet de thèse pourront donner lieu à un co-encadrement et à un cofinancement entre le laboratoire CEA/SPEC et une des lignes de lumière synchrotron SOLEIL (lignes DIFFABS et HERMES).
The magneto-electric coupling between ferroelectric and ferro, ferri or antiferro-magnetic oxides is of current high interest in the field of spintronics and energy conversion. Mastering this type of oxide nanostructures in the form of embedded microstructures is particularly relevant today. In such systems there is a strong interdependence of magnetic, ferroelectric and structural parameters. A relevant study must address all of these aspects.
The BaTiO3 is an archetypical ferroelectric material that belongs to the family of ferroelectric oxides with a perovskite structure. The cobalt ferrite has many advantages like high Curie temperature and high magnetostriction constant. The inclusion of CoFe2O4 microstructures in a BaTiO3 film is a very suitable system for understanding the mechanisms underlying the multiferroic properties.

The growth of thin films of these materials is already mastered in the laboratory. The deposits will be realized by molecular beam epitaxy assisted by atomic oxygen plasma. Within the internship the conditions of realization of encapsulated inclusions will be determined. These samples will then be studied on beamlines DIFFABS and HERMES at synchrotron SOLEIL to determine respectively the crystalline properties and the chemical mapping as well as the magnetic and ferroelectric orders.

The layers developed during this internship belong to a long-term research program. This topic may be extended by a thesis work. The intership as well as the PhD may lead to a co-management and co-financing between the laboratory CEA / SPEC and synchrotron SOLEIL beamlines (DIFFABS and HERMES lines).

Mots clés/Keywords

Oxydes, multiferroïque, épitaxie par jets moléculaires, synchrotron
Oxides, multiferroic, molecular beam epitaxy, synchrotron

Compétences/Skills

Le (la) candidate abordera les techniques d’ultra-vide associées à la croissance par épitaxie par jets moléculaires ainsi qu’une première approche d’études menés sur grands instruments. On utilisera la diffraction des électrons rapides (RHEED), la spectroscopie d’électrons Auger (AES), la photoémission des niveaux de coeur (XPS), la microscopie en champ proche (PFM), la diffraction des rayons X sur la ligne DIFFABS, la microscopie électronique de basse énergie (LEEM), la spectroscopie d’absorption des rayons X (XAS) et la spectro-microscopie X-PEEM au synchrotron SOLEIL sur la ligne HERMES.
The candidate will address the UHV techniques associated with the growth by molecular beam epitaxy and a first approach of studies conducted on large instruments. We will use Reflexion High Energy Electron Diffraction (RHEED), Auger Electron Spectroscopy (AES), Photoemission core level spectroscopy (XPS), Piezo Force Microscopy (PFM), X-ray diffraction on the DIFFABS beamline, Low Energy Electron microscopy (LEEM), X-ray absorption spectroscopy (XAS) and X-PEEM spectro-microscopy on the HERMES beamline of synchrotron SOLEIL.
PDF

Utilisation du compressed sensing en IRM a très bas champ
Use of compressed sensing for Very low field MRI

Spécialité

Instrumentation

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

13-04-2018

Durée

4 mois

Poursuite possible en thèse

oui

Contact

FERMON Claude
+33 1 69 08 94 01

Résumé/Summary

Une image de 2mm iso du cerveau demande à tres bas champ, 1 heure environ ce qui est trop long. Les méthodes de compressed sensing qui optimisent l'acquisition pourraient permettre de gagner un facteur 10 en temps d'acquisition. Le but du stage est d'implémenter ces techniques en IRM à très bas champ.
An image at very low field with 2mm iso resolution requires 1 hour. Compressed sensing methods which optimize k-space covering are able to speed up bt 10 the acquisition. The goal of the internship is to implement it.

Sujet détaillé/Full description

Un système d'IRM à très bas champ, tête entière a été construit dans notre laboratoire et est capable de produire des images 3D de qualité correcte.
Aujourd'hui une image de 2mm iso du cerveau demande à tres bas champ, 1 heure environ ce qui est trop long pour un examen clinique standard. Pour cette raison, nous explorons différentes approches pour réduire le temps d'acquisition. Une approche particulièrement intéressante sont les méthodes de compressed sensing qui optimisent l'acquisition dans l'espace réciproque, actuellement développées à Neurospin et qui pourraient permettre de gagner un facteur 10 en temps d'acquisition. Le but du stage est d'implémenter ces techniques en IRM à très bas champ et de tester quel gain effectif en qualité d'image on peut obtenir. Ce stage s'adresse à des étudiant de cursus soit physique soit imagerie médicale.

Mots clés/Keywords

Imagerie médicale, traitement du signal

Compétences/Skills

RMN du solide, IRM

Logiciels

Matlab, C++ ou Pascal.
PDF

Magnétorésistance Géante tout oxyde
All oxide magnetoresistance

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

27-04-2018

Durée

6 mois

Poursuite possible en thèse

oui

Contact

Solignac Aurelie
+33 1 69 08 95 40

Résumé/Summary

Mise au point des dispositifs GMR basés sur l'empilement tout-oxyde LSMO/LBCO/LSMO.
Étude du dépôt de cuprate La4BaCu5O13 (LBCO) sur manganite (La,Sr)MnO3 (LSMO). Impact des paramètres de dépôt sur la structure cristalline et la morphologie du film mince, analysées par diffraction des rayons X et microscopie à force atomique (AFM).
Development of GMR devices based on the all-oxide stack. : LSMO / LBCO / LSMO
Study of the growth of the La4BaCu5O13 (LBCO) cuprate on manganite (La, Sr) MnO3 (LSMO). Impact of the growth parameters on the crystal structure and the morphology of the thin film, studied by X-ray diffraction and atomic force microscopy (AFM).

Sujet détaillé/Full description

La manganite (La,Sr)MnO3 (LSMO), appartenant à la famille des oxydes de structure pérovskite, présente une très forte polarisation en spin et a un comportement demi métallique, tout en étant ferromagnétique et métallique à température ambiante. Ce matériau semble donc être un bon candidat comme électrode dans des jonctions tunnels magnétiques afin de développer des capteurs magnétiques ultra-sensibles, basés sur la magnétorésistance tunnel (TMR) et fonctionnant à basse température. En effet, des valeurs de TMR de 2000% ont été obtenues pour des jonctions LSMO/SrTiO3 (STO)/LSMO[1]. Cependant ces ratios n’ont pas été reproduits et des valeurs maximales autour de 500% sont usuellement observées. Une des explications avancées est que la forte polarisation du LSMO serait dégradée à l’interface avec la barrière alors que cette interface contrôle les propriétés du transport tunnel. De plus, le niveau de bruit obtenu dans ce type de jonction tunnel tout oxyde est important et lié au transport tunnel à travers la barrière de STO.

Une voie non explorée et qui permettrait de s’affranchir des problèmes avec la TMR serait de développer un élément à magnétorésistance géante (GMR). La barrière isolante est alors remplacée par une barrière métallique, qui allierait un bruit réduit et une magnétorésistance élevée car non limitée par l’interface. L’enjeu est alors de trouver un oxyde métallique qui possède une longueur de diffusion de spin importante, et pour lequel des effets d’interface n’apparaissent pas, afin d'éviter une perte de polarisation de spin dans le LSMO. Le cuprate La4BaCu5O13 (LBCO) est dans cette optique un candidat très intéressant, mais sa croissance par ablation laser reste à optimiser au laboratoire.
Le but du stage est de mettre au point des dispositifs GMR basés sur l'empilement tout-oxyde LSMO/LBCO/LSMO. Tout d'abord il s'agira de maîtriser la croissance de LBCO sur LSMO par ablation laser (pulsed laser deposition, PLD), en étudiant l’impact des paramètres de dépôt sur la structure cristalline et la morphologie du film, analysées par diffraction des rayons X et microscopie à force atomique (AFM). Ensuite, des empilements complets LSMO/LBCO/LSMO seront déposés et des dispositifs GMR micro-fabriqués afin d'en caractériser la magnétorésistance et le niveau de bruit, via des mesures de transport en fonction de la température.

Mots clés/Keywords

Electronique de spin, capteurs magnétorésistifs, films minces oxydes perovskites

Compétences/Skills

Dépôts par ablation laser Microfabrication Mesures de transport et de bruit.

 

Retour en haut