PDF

Fonctionnalisation et assemblage de nanoparticules d’or pour la plasmonique et la nanomédecine.
Functionalization and assembly of gold nanoparticles for plasmonics and nanomedicine.

Spécialité

Chimie des solutions

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31-03-2019

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MARGUET Sylvie
+33 1 69 08 62 83

Résumé/Summary

Pour ce stage, nous proposons de fonctionnaliser des nanoparticules d’or pour les rendre biocompatibles (thérapie et bioimagerie) et de fabriquer des nanostructures en 2D, par autoassemblage, pour la plasmonique.
We propose to functionalize gold nanoparticles to make them biocompatible (therapy and bioimaging) and to fabricate 2D nanostructures, by self-assembly, for plasmonics.

Sujet détaillé/Full description

Nos activités se concentrent sur la synthèse et l'auto-assemblage de nanoparticules d'or (Au-NPs) de haute qualité, avec des tailles et des formes variées, afin de disposer de matériaux appropriés pour la recherche dans les domaines de la plasmonique et du médical (thérapie/imagerie/diagnostic). Les propriétés de ces nanostructures sont étudiées en collaborant avec des experts afin de découvrir des propriétés inattendues (1-5).
Nous synthétisons des Au-NPs, non disponibles commercialement, tels que des cubes, triangles ou plaquettes de tailles et d’épaisseurs variables. L’excitation des plasmons déclenche une cascade de processus complexes qui amène ces NPs à se comporter comme des nanosources de lumière, de chaleur ou de porteurs chauds (électron/trou) selon leur morphologie, leur environnement proche et le mode d'irradiation (continu ou pulsé). Il a été montré récemment que ces Au-NPs, peuvent générer de l'oxygène singlet (1O2) et des radicaux libres de l'eau (ROS) utiles pour la photothérapie du cancer (projet PLAN CANCER Heppros). Les points chauds (électromagnétiques) existants entre des AuNPs organisées en réseaux bidimensionnel (2D) sur un substrat, offrent des interstices de très petites tailles dont nous tirerons parti pour exalter l’interaction lumière-matière, générer de la chaleur (thermoplasmonique) ainsi que des transferts de charge (nanophotochimie) de façon très localisée.

Le stage se déroulera au sein du LEDNA au CEA-Saclay (DRF-IRAMIS-NIMBE-LEDNA). Il consistera à développer un savoir-faire d’auto-assemblage en 2D de nanoparticules d’or à l’interface entre deux liquides. Dans un deuxième volet il s’agira de les enrober d’une couche de silice (cœur-coquille Au@SiO2) dans le but de les rendre biocompatibles et notamment permettre leur incorporation dans des neurones (projet ANR Sinapse). Ce travail pourra être poursuivi en thèse.

1-C Molinaro et al. , Phys Chem Chem Phys, 2018, “From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping”
2-S. Mitiche et al. , J. Phys. Chem. C, 2017, “Near-Field Localization of Single Au Cubes, a Predictive Group Theory Scheme.”
3-M. Pellarin et al. , ACS Nano, 2016, “Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.”
4-C.Molinaro et al. , J. Phys. Chem. C, 2016, “Two-photon luminescence of single colloidal gold nanorods: revealing the origin of plasmon relaxation in small nanocrystals”
5-E. Le Moal et al., Physical Review B, 2016, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle”

Compétences/Skills

Chimie colloïdale et sol-gel. Microscopies électroniques MEB et TEM. Spectroscopie d'extinction en solution.
PDF

Matériaux composites Si@C nanostructurés pour anodes de batteries Li-ion à haute densité d’énergie

Spécialité

Chimie des matériaux

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

22-03-2019

Durée

6 mois

Poursuite possible en thèse

non

Contact

HERLIN Nathalie
+33 1 69 08 36 84

Résumé/Summary

Dans le cadre de la recherche sur les batteries à haute densité d'énergie, le sujet porte sur l'élaboration de composites S-graphite en utilisant comme matériau actif des nanoparticules silicium pré-enrobées de carbone synthétisées au CEA. Ces composites seront testés en piles bouton. Le travail est localisé à Grenoble.

Sujet détaillé/Full description

Le silicium apparaît comme un matériau d’électrode négative prometteur pour les batteries Li-ion. En effet, sa capacité spécifique théorique de 3579mAh/g lui permet d’être une alternative au graphite (372mAh/g) pour les applications à haute densité d’énergie. Cependant, il présente une expansion volumique pouvant atteindre près de 300% lors de l’insertion du lithium. Ces variations de volume conduisent à la pulvérisation des particules et à l’instabilité de l’interface solide-électrolyte (SEI), et donc à la dégradation des électrodes et à la chute rapide des performances électrochimiques au cours des cycles de charge-décharge.

Des améliorations sont possibles en réduisant la taille des particules autour de 100nm afin de limiter la décrépitation mécanique [1] ou bien en développant des composites silicium-carbone avec des nanostructures complexes [2]. Ainsi, la structure des électrodes reste stable mais les phénomènes aux interfaces deviennent prépondérants et tous les critères de performances requis pour une densité d’énergie élevée ne sont plus respectés.

Des nanoparticules originales cœur – coquille de silicium revêtu de carbone, Si@C, sont synthétisées par un procédé de pyrolyse laser double étage dans le cadre d’une collaboration interne [3]. Ces particules, utilisées en tant qu’anode de batteries Li-ion, permettent d’obtenir des performances très intéressantes au niveau de l’état de l’art. Cependant, la surface spécifique élevée de ces nanopoudres est un inconvénient pour la mise en œuvre et la capacité spécifique irréversible initiale. L’objectif du stage est, dans un premier temps, de développer la synthèse de composites silicium – carbone à partir de ces nanoparticules en poursuivant des travaux en cours. Les matériaux Si@C sont mélangés à du graphite et à un précurseur organique de carbone transformé en carbone amorphe par décomposition thermique. Les performances électrochimiques de ces matériaux seront évaluées en pile bouton face à du lithium métal. Dans un second temps, les matériaux les plus performants seront testés en cellules Li-ion dans une configuration plus représentative de l’application finale.

[1] Liu X.H. et al, ACS nano, 6(2), 1522–1531, 2012.
[2] Wu H. et al , Nano Today 7, 414-429, 2012.
[3] One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries
J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher, C. Haon, A. Bordes, E. De Vito, A. Boulineau, S. Jouanneau, S. Larbi, N. Herlin-Boime and C. Reynaud, ACS Appl. Mater. Interfaces 2015, 7, 6637−6644.

Mots clés/Keywords

Electrochimie

Compétences/Skills

Méthodes d’élaboration et caractérisation de matériaux : fours, presses, DRX, BET, microscope... Mesures de propriétés électrochimiques
PDF

Synthese de composites fonctionnels par pyrolyse laser
Synthesis of functional composites by laser pyrolysis

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

20-04-2019

Durée

6 mois

Poursuite possible en thèse

oui

Contact

HERLIN Nathalie
+33 1 69 08 36 84

Résumé/Summary

Le sujet de thèse porte sur la synthèse par pyrolyse laser de nanocomposites fonctionnels de deux familles. La première famille de nanocomposites concerne les céramiques de type carbure et nitrure d’éléments de transition et la deuxième les nanocomposites « cœur-coquille » à base d’oxyde de fer magnétiques
The thesis subject is the synthesis by laser pyrolysis of functional nanocomposites of two families. The first family of nanocomposites concerns carbide and nitride ceramics with transition elements and the second nanocomposites "heart-shell" based on magnetic iron oxide.

Sujet détaillé/Full description

Projet de stage
CEA-Saclay, Direction de la recherche fondamentale, CEA-CNRS UMR 3685 NIMBE, Saclay, France.
National Institute for Materials Science, CNRS-UMI 3629 LINK, Tsukuba, Japon.
Université de Rennes, CNRS-UMR 6226 ISCR, Rennes, France.

Localisation 3 mois CEA-Saclay – 2-3 mois LINK (Tsukuba, Japon)
Contexte. Ce stage s’inscrit dans le cadre d’une collaboration internationale entre le laboratoire Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie du CEA-Saclay (UMR CEA-CNRS 3685), le ‘Laboratory of Innovative Materials and Key Structures’ LINK localisé au National Institute for Materials Science (NIMS) à Tsukuba au Japon (LINK-UMI CNRS-Saint-Gobain 3629).
Une partie du sujet sera en support d’une thèse en cours à l’Université de Rennes entre l’Institut des Sciences Chimiques de Rennes, le Laboratoire de Synthèse et Fonctionnalisation des Céramiques (CNRS-Saint-Gobain) de Cavaillon et le LINK.

Objectifs. Le sujet de thèse porte sur la synthèse par pyrolyse laser de nanocomposites fonctionnels de deux familles. La première famille de nanocomposites concerne les céramiques de type carbure et nitrure d’éléments de transition et la deuxième les nanocomposites « cœur-coquille » à base d’oxyde de fer magnétiques. Ces nanomatériaux présentent un intérêt croissant en catalyse hétérogène ou pour des applications en biotechnologies. Le stage, à caractère fondamental, consistera à synthétiser ces nanomatériaux par pyrolyse laser sur le site du CEA-Saclay, et à caractériser leurs propriétés structurales et microstructurales au LINK. Le stagiaire sera donc amené à effectuer un séjour de plusieurs mois au Japon. Une bourse du NIMS incluant le logement et des frais journaliers (2600 JPY/jour) sera demandée. Le billet AR sera pris en charge en fonction des possibles bourses obtenues par l’étudiant(e).
Déroulement des travaux. Concernant la synthèse des nanocomposites, la méthode envisagée est la pyrolyse Laser, cette méthode originale repose sur l’interaction en un précurseur gazeux ou liquide et un laser CO2 de puissance. Elle permet d’obtenir des particules variées dans une gamme de taille ajustable de 20 à 80 nm avec des taux de production de la dizaine de g/heure pour le TiO2 par exemple. Dans le cadre du stage, les précurseurs employés seront des nanoparticules de α-Fe2O3, des précurseurs commerciaux ou des clusters de métaux de transition. Ces derniers seront synthétisés à Rennes dans l’équipe CSM. Ces précurseurs seront dispersés dans un liquide pour être injectées dans le faisceau laser afin d’obtenir des céramiques carbure ou nitrure. Le stagiaire effectuera aussi des synthèses pour enrober des nanocristaux de Fe2O3 avec une couche de silice, les particules d’oxyde de fer seront préformées et la silice sera synthétisée in situ à partir d’un précurseur de type TEOS. Les produits obtenus seront caractérisés par observation MEB, DRX et ATG à Saclay. Des analyses élémentaires HRTEM, XRF, EDS et EPMA seront réalisées au LINK.
Ce projet en collaboration entre plusieurs laboratoires pourrait en fonction des résultats constituer la première étape d’une collaboration de plus longue durée et se poursuivre dans le cadre d’une thèse (financement non acquis à ce jour).
Profil recherché : M2 ou Ingénieur 3A – chimie, matériaux
Anglais impératif

Contact Univ. Rennes : F. Grasset, Email : fabien.grasset@univ-rennes1.fr

Compétences/Skills

Pyrolyse laser

 

Retour en haut