Faits marquants 2014

26 juin 2014

Le platine est un élément de référence en matière d'efficacité catalytique, en particulier pour la filière hydrogène énergie : électrolyse de l'eau et réactions à la membrane de piles à combustible. Son abondance limitée, et donc son coût élevé, interdisent cependant son usage généralisé dans des dispositifs à bas coût, et des voies alternatives doivent être développées.

Au LICSEN (CEA-Saclay/DSM/IRAMIS), des structures hybrides supramoléculaires à base de nanotubes de carbone et de porphyrines de cobalt ont été testées comme catalyseur électrochimique pour la réduction de l’oxygène. La méthode de fonctionnalisation des nanotubes de carbone combine les avantages des approches covalente et non-covalente, sans leurs limitations respectives. Les hybrides élaborés réduisent l’oxygène directement en eau via un processus à 4 électrons en milieu acide, avec une très faible formation de peroxyde d’hydrogène (produit intermédiaire, résultant d'un processus à deux électrons), ce qui les rend utilisables pour les piles à combustible de type "Proton Exchange Membrane Fuel Cells" - PEMFCs.

 

07 juillet 2014

La résonance magnétique nucléaire (RMN) est une technique d'analyse chimique très puissante. Au-delà du contraste usuel, fonction des temps de relaxation des spins nucléaires, le décalage en fréquence du signal RMN, issu d'atomes avec un environnement moléculaire différent ("décalage chimique"), offre une sélectivité spectroscopique.

Sur ce principe, des agents de contraste RMN sont obtenus en utilisant des atomes lourds engagés dans des complexes supramoléculaires. Le LSDRM a en particulier fait sa spécialité dans la conception de telles biosondes à base de RMN 129Xe, où le xénon polarisé en spin est encapsulé dans des molécules-cages fonctionnalisées par des ligands, conçus pour reconnaître des cibles spécifiques. Dans cette approche, l'effet de sélectivité spectrale (la résonance du xénon encagé prenant une fréquence spécifique, fonction par exemple de la nature précise de la cage) est ici complété par la haute sensibilité de la RMN apportée par l’hyperpolarisation de spin du gaz rare.

Pour concevoir et utiliser au mieux ces sondes, les équipes du LSDRM et du LCMCE de l'IRAMIS/NIMBE, en collaboration avec une équipe de l'IBiTec-S/SCBM, ont cherché à modéliser leurs paramètres RMN. Dans une publication dans Angewandte Chemie, ils rapportent les résultats remarquables obtenus par simulation, en excellent accord avec leurs résultats expérimentaux.

06 mars 2014

Comprendre comment se forment les nanoparticules dans l’eau et à température ambiante est un enjeu important, tant pour la compréhension de mécanismes naturels que pour la synthèse efficace de nanomatériaux. Or, les schémas de croissance classiquement invoqués (processus de germination - croissance) échouent parfois dramatiquement à décrire la réalité, notamment les tailles finales, la qualité cristalline et la vitesse de production. Les progrès en la matière sont ralentis du fait de la grande difficulté à observer les étapes intermédiaires entre la solution avant réaction, et la construction du premier nanocristal.

Un groupe de chercheurs de l'IRAMIS/NIMBE, du laboratoire de Physique de la Matière Condensée de l'École Polytechnique et de l'Université Pierre-et-Marie-Curie a réussi cette prouesse en utilisant notamment le rayonnement du synchrotron SOLEIL. Leurs observations ont permis de proposer un schéma de croissance inhabituel, mais certainement générique. Ces résultats ont été publiés récemment dans ACS Nano, et ouvrent de nouvelles perspectives pour la préparation de sondes biologiques luminescentes et de précurseurs pour des couches minces luminescentes transparentes.

 

15 mai 2014

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.

 

26 juin 2014

Le platine est un élément de référence en matière d'efficacité catalytique, en particulier pour la filière hydrogène énergie : électrolyse de l'eau et réactions à la membrane de piles à combustible. Son abondance limitée, et donc son coût élevé, interdisent cependant son usage généralisé dans des dispositifs à bas coût, et des voies alternatives doivent être développées.

Au LICSEN (CEA-Saclay/DSM/IRAMIS), des structures hybrides supramoléculaires à base de nanotubes de carbone et de porphyrines de cobalt ont été testées comme catalyseur électrochimique pour la réduction de l’oxygène. La méthode de fonctionnalisation des nanotubes de carbone combine les avantages des approches covalente et non-covalente, sans leurs limitations respectives. Les hybrides élaborés réduisent l’oxygène directement en eau via un processus à 4 électrons en milieu acide, avec une très faible formation de peroxyde d’hydrogène (produit intermédiaire, résultant d'un processus à deux électrons), ce qui les rend utilisables pour les piles à combustible de type "Proton Exchange Membrane Fuel Cells" - PEMFCs.

 

15 mai 2014

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.

 

17 décembre 2014

En datant par carbone 14 les pièces métalliques retrouvées dans les cathédrales gothiques, une équipe interdisciplinaire vient de démontrer, pour la première fois par une datation absolue, que le fer était introduit en renfort de la pierre dès l'étape de construction. Cette étude, fruit d'une collaboration entre le Laboratoire archéomatériaux et prévision de l'altération [1] (CNRS/CEA), le Laboratoire de mesure du carbone 14 (CNRS/CEA/IRD/IRSN/Ministère de la Culture et de la Communication) et l'équipe Histoire des pouvoirs, savoirs et sociétés de l'Université Paris 8, éclaire d'un jour nouveau la maîtrise technique et les intentions des bâtisseurs de cathédrales. Elle est publiée dans le numéro de janvier 2015 de la revue Journal of Archaeological Science. Cette méthode innovante pourrait renouveler la compréhension des bâtiments médiévaux, en Europe, comme la Sainte-Chapelle mais également en Asie, tels les temples d'Angkor.

 

 

Retour en haut