Faits marquants scientifiques 2014

17 décembre 2014

En datant par carbone 14 les pièces métalliques retrouvées dans les cathédrales gothiques, une équipe interdisciplinaire vient de démontrer, pour la première fois par une datation absolue, que le fer était introduit en renfort de la pierre dès l'étape de construction. Cette étude, fruit d'une collaboration entre le Laboratoire archéomatériaux et prévision de l'altération [1] (CNRS/CEA), le Laboratoire de mesure du carbone 14 (CNRS/CEA/IRD/IRSN/Ministère de la Culture et de la Communication) et l'équipe Histoire des pouvoirs, savoirs et sociétés de l'Université Paris 8, éclaire d'un jour nouveau la maîtrise technique et les intentions des bâtisseurs de cathédrales. Elle est publiée dans le numéro de janvier 2015 de la revue Journal of Archaeological Science. Cette méthode innovante pourrait renouveler la compréhension des bâtiments médiévaux, en Europe, comme la Sainte-Chapelle mais également en Asie, tels les temples d'Angkor.

02 décembre 2014
Des chercheurs de l'Institut des sciences chimiques de Rennes, en collaboration avec l'ENS Cachan, l'École Polytechnique (Palaiseau) et le CEA (Saclay), ont développé de nouvelles familles de semi-conducteurs organiques, utilisées pour la première fois avec succès dans des "PhOLEDs" : diodes électrophosphorescentes organiques. Publication dans Angewandte Chemie International Edition.
26 juin 2014

Le platine est un élément de référence en matière d'efficacité catalytique, en particulier pour la filière hydrogène énergie : électrolyse de l'eau et réactions à la membrane de piles à combustible. Son abondance limitée, et donc son coût élevé, interdisent cependant son usage généralisé dans des dispositifs à bas coût, et des voies alternatives doivent être développées.

Au LICSEN (CEA-Saclay/DSM/IRAMIS), des structures hybrides supramoléculaires à base de nanotubes de carbone et de porphyrines de cobalt ont été testées comme catalyseur électrochimique pour la réduction de l’oxygène. La méthode de fonctionnalisation des nanotubes de carbone combine les avantages des approches covalente et non-covalente, sans leurs limitations respectives. Les hybrides élaborés réduisent l’oxygène directement en eau via un processus à 4 électrons en milieu acide, avec une très faible formation de peroxyde d’hydrogène (produit intermédiaire, résultant d'un processus à deux électrons), ce qui les rend utilisables pour les piles à combustible de type "Proton Exchange Membrane Fuel Cells" - PEMFCs.

 

15 mai 2014

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.

 

05 février 2014

De nouvelles réglementations, imposent la recherche de nouveaux procédés industriels, moins dangereux pour la santé ou pour une meilleure préservation de notre environnement. Il en est ainsi des traitements de surface à base de chrome hexavalent (Cr VI), produit hautement cancérogène, utilisés comme préparation des métaux avant peinture. L'équipe du NIMBE élabore un procédé alternatif (SEEP : Surface Electroinitiated Emulsion Polymerization) destiné à remplacer ces traitements qui seront interdits à court terme.

 

04 août 2014

La formation de méthanol (CH3OH) à partir du CO2 est une stratégie prometteuse pour la production d’un carburant à haute densité énergétique, à partir de ressources renouvelables et d’énergie décarbonée. Cependant les catalyseurs existant pour l’électrolyse directe du CO2 en méthanol ne sont ni efficaces ni sélectifs et l’hydrogénation du CO2 pose des problèmes d’industrialisation liés à l’utilisation de hautes pressions.

L’électro–réduction du CO2 en acide formique est en revanche facile car elle conduit à la formation d’une seule liaison C–H contre trois pour le méthanol. Une alternative intéressante pour convertir le CO2 en méthanol serait donc d’utiliser l’acide formique comme relai, à condition d’être capable de convertir ensuite efficacement l’acide formique en méthanol. Alors que cette dernière réaction est actuellement effectuée avec des rendements inférieurs à 2%, en présence de catalyseur à base d’iridium, le LCMCE (Laboratoire de Chimie Moléculaire et Catalyse pour l'Énergie) a récemment développé une catalyse efficace au ruthénium avec des rendements atteignant 50% en méthanol.

 

23 septembre 2014

Une équipe de recherche du CEA Iramis, du Synchrotron SOLEIL, de l’Institut Lavoisier de Versailles (UVSQ / CNRS) et de l’Institut de physique de Rennes (CNRS/Université Rennes 1) a mis au point une méthode de "lentille aérodynamique" qui permet d’observer des nanoparticules libres, sans interférences avec un substrat. Il est ainsi possible de caractériser spécifiquement la surface des nanoparticules. Les perspectives sont nombreuses, en particulier pour suivre et maitriser l'élaboration de nanoparticules fonctionnalisées, aux applications très prometteuses dans les domaines du biomédical ou de l’énergie. L’étude est publiée dans le Journal of Physical Chemistry Letters.

01 juillet 2014
Après avoir mis au point une méthode de marquage isotopique qui rend possible une détection extrêmement sensible des nanotubes de carbone au sein d’organismes vivants, des chercheurs du CEA et du CNRS ont étudié le devenir de ces nanotubes sur une période d’un an chez l’animal. Chez la souris, ils montrent qu’une faible fraction (0,75 %) de la quantité de nanotubes initialement absorbée par voie respiratoire franchit la barrière pulmonaire, pour se relocaliser dans le foie, la rate et la moelle osseuse. Si ces résultats ne sont pas extrapolables à l’homme, cette étude démontre l’importance de mettre au point des approches ultrasensibles pour évaluer le comportement de nanoparticules dans les organismes vivants. Elle est publiée dans ACSNano

 

06 mars 2014

Comprendre comment se forment les nanoparticules dans l’eau et à température ambiante est un enjeu important, tant pour la compréhension de mécanismes naturels que pour la synthèse efficace de nanomatériaux. Or, les schémas de croissance classiquement invoqués (processus de germination - croissance) échouent parfois dramatiquement à décrire la réalité, notamment les tailles finales, la qualité cristalline et la vitesse de production. Les progrès en la matière sont ralentis du fait de la grande difficulté à observer les étapes intermédiaires entre la solution avant réaction, et la construction du premier nanocristal.

Un groupe de chercheurs de l'IRAMIS/NIMBE, du laboratoire de Physique de la Matière Condensée de l'École Polytechnique et de l'Université Pierre-et-Marie-Curie a réussi cette prouesse en utilisant notamment le rayonnement du synchrotron SOLEIL. Leurs observations ont permis de proposer un schéma de croissance inhabituel, mais certainement générique. Ces résultats ont été publiés récemment dans ACS Nano, et ouvrent de nouvelles perspectives pour la préparation de sondes biologiques luminescentes et de précurseurs pour des couches minces luminescentes transparentes.

 

07 juillet 2014

La résonance magnétique nucléaire (RMN) est une technique d'analyse chimique très puissante. Au-delà du contraste usuel, fonction des temps de relaxation des spins nucléaires, le décalage en fréquence du signal RMN, issu d'atomes avec un environnement moléculaire différent ("décalage chimique"), offre une sélectivité spectroscopique.

Sur ce principe, des agents de contraste RMN sont obtenus en utilisant des atomes lourds engagés dans des complexes supramoléculaires. Le LSDRM a en particulier fait sa spécialité dans la conception de telles biosondes à base de RMN 129Xe, où le xénon polarisé en spin est encapsulé dans des molécules-cages fonctionnalisées par des ligands, conçus pour reconnaître des cibles spécifiques. Dans cette approche, l'effet de sélectivité spectrale (la résonance du xénon encagé prenant une fréquence spécifique, fonction par exemple de la nature précise de la cage) est ici complété par la haute sensibilité de la RMN apportée par l’hyperpolarisation de spin du gaz rare.

Pour concevoir et utiliser au mieux ces sondes, les équipes du LSDRM et du LCMCE de l'IRAMIS/NIMBE, en collaboration avec une équipe de l'IBiTec-S/SCBM, ont cherché à modéliser leurs paramètres RMN. Dans une publication dans Angewandte Chemie, ils rapportent les résultats remarquables obtenus par simulation, en excellent accord avec leurs résultats expérimentaux.

07 février 2014

La résonance magnétique nucléaire permet l’étude de la structure et de la dynamique moléculaire par l’acquisition des spectres à haute résolution et la mesure des temps de relaxation. Les temps de relaxation mesurables sont typiquement de l'ordre de la période de précession du moment magnétique, lors de son retour à l'équilibre, et donc fonction de la valeur du champ magnétique polarisant. Une collaboration de chercheurs de l'ENS-Paris et de l'IRAMIS a développé une méthode originale permettant, par une variation du champ magnétique polarisant, de mesurer les relaxations lentes et rapides d'un même système moléculaire, tout en préservant une haute résolution spectrale.

 

 

 

Retour en haut