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La diffusion est élastique : ki = kd

ψ = ψ0
b

D
ei(ωt−kD)
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Différence de phase :

∆φ = ~r( ~kd − ~ki)

Vecteur de diffusion :

q =
4π
λ

sin(θ/2)

C’est l’inverse d’une longueur qui
joue le rôle de l’échelle

d’observation.

Si ψ(0, x, t) est l’onde diffusée par
une origine, l’onde diffusée par un

point situé en ~r est
ψ(r, x, t) = ψ(0, x, t) · ei(~q·~r)
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Ex : ClOmNnHp → b = lbC +mbO + nbN + pbH︸ ︷︷ ︸
grandeurs tabulées
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Molécules à symétrie sphérique
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b2 × nN2

]
qR�1

= P (q)

P (q → 0) = 1

S (q → 0) = (bN)2 × nS(q)
n objets ponctuels de longueur
de diffusion bN
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Seul les fluctuations, spatiales ou temporelles, de longueur de diffusion
contribuent à l’intensité diffusée.
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fonction de corrélation de paire

i-j

i-j

x

x

x 2

x2
xi xj

a

∆x2

〈∆xi∆xj〉 = 0 sauf pour i = j

S (q) = b2
V

v

〈
∆x2

〉

index.html


Diffusion et fluctuations (suite)

S (q) =
V/v∑
i

V/v∑
j
〈∆bi∆bj〉 ei~q·(~ri−~rj)

〈∆bi∆bj〉 /b2 = 〈∆xi∆xj〉

fonction de corrélation de paire
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Macromolécules en solution, limite q → 0

Compressibilité osmotique : (Cdπ/dC)−1, C = nM/V
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Ex 1 : Compressibilité de la myoglobine

C. Loupiac et al. (2002), Eur. J. Biochem., 269 : 4731-4737 (PACE, LLB, Saclay)

moderate pressures near 300 MPa induce subtle structural
rearrangements of the protein matrix whereas higher
pressures, near 1 GPa, lead to unfolding. Pressure may
also induce changes in the heme structure and in the spin
state of the iron atom [17,18,20,21,26–29]. Other studies of
proteins at high pressures have shown that they react as a
whole, simultaneously adapting their structure, their spatial
charge distribution and their interactions with the solvent
[2,3].

The present SANS measurements on MbN3 at pres-
sures up to about 300 MPa indicate that the structural
reorganization of the active site previously observed by
optical absorption in the UV-visible range [17,18,20,21],
Raman [26], and NMR [27–29] spectroscopies and the
secondary structure modifications observed by FTIR

through the amide I¢ band [23,24] are not related to a
change of compactness of Mb as its radius of gyration
remains constant. This does not means that MbN3

remains in the native state up to 300 MPa. More likely,
the protein starts to denature at a lower pressure and
becomes a slightly swollen molten globule. The value of
the radius of gyration given by neutron scattering is
indeed rather insensitive to the early stages of protein
unfolding. This has been demonstrated for neocarzinos-
tatine denatured by guanidinium chloride [46]. In the
FTIR studies it was suggested that, in addition to the
strengthening of the hydrogen bond network with
increasing pressure, the bonding of a C¼O group with
a N2H group and a water molecule may also occur. This
means that the protein may become more hydrated with
increasing pressure [24]. This increase of hydration might
be due to the appearance of a molten globule state as
the pressure dependence of the second virial coefficient
suggests that the surface hydration decreases with
pressure.

The present SANS study allowed the specific volume of
MbN3 to be determined as a function of pressure. It
decreases by about 5.4% between atmospheric pressure and
300 MPa. Within the uncertainties of the only three
measurements carried out in this pressure range, the
isothermal compressibility of hydrated MbN3 is almost
constant. Its value is jT,p ¼ (1.6 ± 0.1) 10)4 MPa)1 at
about 20 !C. Therefore, hydrated MbN3 is about two to
three times as incompressible as H2O or 2H2O at the same
temperature. The value of the isothermal compressibility of
hydrated MbN3 compares well with that obtained by
densimetry for staphylococcal nuclease at 25 !C:
jT,p ¼ (1.1 ± 0.2) 10)4 MPa)1 between atmospheric pres-
sure and 60 MPa [47].

The above-mentioned values of the isothermal compress-
ibility, jT,p, of proteins cannot be directly compared with
those of the adiabatic compressibility, jS, inferred from
ultrasound velocity measurements [48–53]. According to
Eqn 8, jT,p is a characteristic property of the hydrated
protein alone whereas jS is not as it is measured at constant
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Ex 2 : Interactions et cristallisation des protéines

P (q → 0) = 1 S (q→0)/V
C = K2M(1− 2MA2C + · · · )

In the light scattering regime, the effective protein radius and the mean
distances between the molecules in solution (Fredericks et al., 1994) are
much lower than the wavelength of the laser used (488 nm). Thus the form
factor is effectively equal to unity for most of the accessible q values. This
allows us to measure the scattered intensity at an angle of 90°, which
minimizes eventual effects from dust particles. For neutron scattering, the
form factor varies with q but approaches unity at q 3 0. In this limit, the
structure factor reduces to (Goodwin, 1981; Chen and Bendedouch, 1986)

S!q 3 0" ! I!0" ! kT""#

"$#T $ !1% 2B#22#"$1 (5)

where $ is the osmotic pressure of the protein solution and B#22 is the
second virial coefficient, which samples the net effect of the interaction
energy over the whole range of accessible configurations:

B#22 ! $2$ %
0

%

!g!r" & 1"r2dr (6)

When the protein molecules are approximated as spheres of radius rp,
g(r) & 0 over the range 0 ' r ' rp, because of steric repulsion. The value
of the above integral in this range is equal to four times the molecular
volume of the protein and makes up the so-called excluded volume con-
tribution to B#22. The value of the integrand in the range rp ' r ' % is a
complex function of the intermolecular interactions present at different
separations. A positive virial coefficient reflects the presence of predom-
inantly repulsive interactions and vice versa.
The SLS data were processed by the classical method of Zimm (1948),

whereby

KCp
R'

!
1
MW

% 2B22Cp (7)

where Mw is the molecular weight of the protein and Cp is its w/v
concentration. The second virial coefficient as determined experimentally
using Eq. 7 has units of mol ml/g2 and is related to that given in Eqs. 5 and
6 by B22 ( B#22/Mw

2 NA (NA is Avogadro’s number). The Rayleigh ratio, R',
is the normalized scattering intensity, which was calibrated by using pure
benzene and subtracting the background scattering from the pure electro-
lyte solution. K is a constant that is calculated from the optical properties
of the system (Utiyama, 1972):

K !
4$2n02

NA(4 "dndC#2 (8)

where n0 is the refractive index of the solvent, (dn/dC) is the refractive
index increment of the protein, and ( is the wavelength of the laser in
vacuum. The values of (dn/dC) used were 0.20 ml/g for lysozyme (Fred-
ericks et al., 1994, confirmed by our independent measurements) and 0.192
for chymotrypsinogen (Smith, 1970). The value of R'(90°) for benzene was
set at 38.6 ) 10$6 cm$1, interpolated from the data of Coumou et al.
(1960, 1964).
Once the data are plotted according to Eq. 7, the values of the slope and

the intercept give the second virial coefficient and the molecular weight of
the dissolved protein, which is independently known from its amino acid
composition and therefore can be used as a check on the experimental
precision.

RESULTS

Static light scattering

Lysozyme

The virial coefficient measurements for lysozyme span the
pH region from 3 to 10.6 at four different electrolyte con-

centrations—0.005, 0.1, 0.3, and 0.5 M NaCl. Measure-
ments at the higher electrolyte concentrations of 0.1, 0.3,
and 0.5 M were made to determine the behavior of B22 upon
the approach to protein crystallization conditions (Alderton
et al., 1945; Ataka and Shoji, 1986; Howard et al., 1988),
whereas the measurements at 0.005 M NaCl probed the
interactions in the low-electrolyte region, where long-range
electrostatics are significant. The data were obtained with
protein solutions diluted below 10 mg/ml. This value is
lower than the reported lysozyme solubility values at all salt
concentrations in the pH range 4–7.5 at 25°C (Howard et
al., 1988), which reduces the risk of interference from
higher order terms in the virial expansion and of experi-
mental errors arising from concentration-induced protein
aggregation. Examples of typical experimental measure-
ments plotted according to Eq. 7 are shown in Fig. 1. The
lines show the results of least-squares linear regression with
both the slope and the intercept varied. The lines should
meet at the same point, which is related to the reciprocal of
the protein molecular weight (Eq. 7). This is reasonably
well accomplished for all of the data plots, with the excep-
tion of that at the lowest electrolyte concentration and pH.
The average intercept, excluding the point at pH 3 and I (
0.005 M, corresponds to a protein molecular weight of
14,600. This value is closer to the lysozyme molecular
weight from amino acid sequencing (14,320) than to the
molecular weights determined by other physical methods
(e.g., sedimentation; Creighton, 1993, p. 266).
The virial coefficients obtained (Fig. 2) are highly posi-

tive (corresponding to repulsive interactions) at low elec-
trolyte concentrations and low pH. As pH increases, the
coefficients decrease, dropping sharply above pH 9 to reach
a negative value at pH *10.5. The virial coefficients are
slightly positive at I ( 0.1 and 0.3 M electrolyte and pH 3,
but they become increasingly negative at intermediate and

FIGURE 1 Typical plots of lysozyme SLS data according to Eq. 7. The
variation of the virial coefficient (given by the slope of the lines) with pH
and electrolyte concentration is evident.
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Ex 2 : Interactions et cristallisation des protéines

P (q → 0) = 1 S (q→0)/V
C = K2M(1− 2MA2C + · · · )

S(q →∞) = 1 S (q→0)/V
C = K2MP (q)
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S!q 3 0" ! I!0" ! kT""#

"$#T $ !1% 2B#22#"$1 (5)

where $ is the osmotic pressure of the protein solution and B#22 is the
second virial coefficient, which samples the net effect of the interaction
energy over the whole range of accessible configurations:

B#22 ! $2$ %
0

%

!g!r" & 1"r2dr (6)

When the protein molecules are approximated as spheres of radius rp,
g(r) & 0 over the range 0 ' r ' rp, because of steric repulsion. The value
of the above integral in this range is equal to four times the molecular
volume of the protein and makes up the so-called excluded volume con-
tribution to B#22. The value of the integrand in the range rp ' r ' % is a
complex function of the intermolecular interactions present at different
separations. A positive virial coefficient reflects the presence of predom-
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The SLS data were processed by the classical method of Zimm (1948),

whereby

KCp
R'

!
1
MW

% 2B22Cp (7)

where Mw is the molecular weight of the protein and Cp is its w/v
concentration. The second virial coefficient as determined experimentally
using Eq. 7 has units of mol ml/g2 and is related to that given in Eqs. 5 and
6 by B22 ( B#22/Mw

2 NA (NA is Avogadro’s number). The Rayleigh ratio, R',
is the normalized scattering intensity, which was calibrated by using pure
benzene and subtracting the background scattering from the pure electro-
lyte solution. K is a constant that is calculated from the optical properties
of the system (Utiyama, 1972):

K !
4$2n02

NA(4 "dndC#2 (8)

where n0 is the refractive index of the solvent, (dn/dC) is the refractive
index increment of the protein, and ( is the wavelength of the laser in
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al., 1988), which reduces the risk of interference from
higher order terms in the virial expansion and of experi-
mental errors arising from concentration-induced protein
aggregation. Examples of typical experimental measure-
ments plotted according to Eq. 7 are shown in Fig. 1. The
lines show the results of least-squares linear regression with
both the slope and the intercept varied. The lines should
meet at the same point, which is related to the reciprocal of
the protein molecular weight (Eq. 7). This is reasonably
well accomplished for all of the data plots, with the excep-
tion of that at the lowest electrolyte concentration and pH.
The average intercept, excluding the point at pH 3 and I (
0.005 M, corresponds to a protein molecular weight of
14,600. This value is closer to the lysozyme molecular
weight from amino acid sequencing (14,320) than to the
molecular weights determined by other physical methods
(e.g., sedimentation; Creighton, 1993, p. 266).
The virial coefficients obtained (Fig. 2) are highly posi-

tive (corresponding to repulsive interactions) at low elec-
trolyte concentrations and low pH. As pH increases, the
coefficients decrease, dropping sharply above pH 9 to reach
a negative value at pH *10.5. The virial coefficients are
slightly positive at I ( 0.1 and 0.3 M electrolyte and pH 3,
but they become increasingly negative at intermediate and

FIGURE 1 Typical plots of lysozyme SLS data according to Eq. 7. The
variation of the virial coefficient (given by the slope of the lines) with pH
and electrolyte concentration is evident.
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Here ! is the fraction of monomolecular protein converted
into aggregates. The effective radius of the aggregates Ragg
is an unknown function of n, but the simple physical re-
striction Ragg ! nR will always hold.
Fits of the data for the 2 h scattering curve at pH 7 with

Eq. 9 were carried out with progressively increasing values
of n in the q region above 0.05 Å"1, where the scattering
depends only on the size and shape of the species (S(q) #
1). The physical restriction above was met at the lowest
value of n $ 4, with the fitting parameters taking the values
! $ 0.33 and Ragg $ 40 Å. As seen from the theoretical
fitting curves shown in Fig. 8 and expanded in the inset, the
scattering intensity at q values higher than %0.12 Å"1 is

determined mostly by the presence of the monomers and
increases at lower values because of the strong scattering
from the aggregates. The value obtained for the effective
size of the tetramer is twice the diameter of a single mole-
cule, which is reasonable, although the real physical picture
likely includes polydisperse aggregates. The negative devi-
ation of the theoretical curve from the data at low q values
reflects the fact that S & 1 because of the strongly attractive
interactions, which are not accounted for in the model. Thus
the estimate above suggests that %30% of the original
protein sample aggregated in a period of 2 h into clusters
comprising four or more molecules each. The fraction of
monomers incorporated into clusters increased with time, as
evidenced by the continued increase in intensity at low q,
due to the increasing number of aggregates, and the con-

TABLE 1 Comparison of lysozyme virial coefficients
obtained by SLS, SANS, and theoretical fitting

pH
Electrolyte
conc. (M)

B22 (mol ml ' 104/g2)

From SLS From SANS Calculated

3 0.1 3.95 — 10.1
0.5 "1.26 — "2.09

4.5 0.005 33.3 31.0 145
0.1 2.15 — 4.27
0.3 "1.39 "2.46 "2.80
0.5 "3.24 — "4.72

6 0.005 28.5 21.0 112
0.1 "2.46 — 1.77
0.3 "3.60* "5.56 "4.02
0.5 "4.54 — "5.45

7.5 0.1 "3.65 — 0.3
0.3 "5.50 — "4.63

9 0.005 15.6 17.0 77.7
0.1 "4.41 — "1.00
0.3 "5.28* "6.46 "5.14
0.5 "7.75 — "6.09

The fitted parameters were AH $ 13.8kT, dp $ 36.8 Å.
*Interpolated value.

FIGURE 6 The values of the virial coefficients for lysozyme obtained by
SANS (large symbols) compared to the corresponding SLS data (small
symbols and lines).

FIGURE 7 Intensity I versus scattering vector q for SANS measure-
ments on chymotrypsinogen at pH 3 and two different electrolyte concen-
trations. The solid curve is the form factor function fitted by approximating
the protein shape by a sphere. Positive deviations from this curve in the low
q region indicate attractive interactions and negative deviations indicate
repulsions.

TABLE 2 Comparison of chymotrypsinogen virial
coefficients obtained by SLS, SANS, and theoretical fitting

pH
Electrolyte
conc. (M)

B22, mol ml/g2 ' 104

From SLS From SANS Calculated

3 0.005 7.8 4.46 90.8
0.1 2.50 — 3.21
0.3 "1.40 "1.8 0.08

5.25 0.005 "1.75* — "1.75
0.1 "1.75* — "1.95
0.3 "1.75* — "2.22

6.8 0.005 "8.65 "4.8# "6.08
0.1 "4.10 — "2.52
0.3 "2.05 — "2.43

The fitted parameters were AH $ 10.1kT, dp $ 43.5 Å.
*Common interpolated value.
#Estimated by the idealized model (Eq. 9).
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D = 2

Sphère : D = 2

Boule : Dsurface = 2

0.0001

0.001

0.01

0.1

1

P(
q)

0.1
2 4 6 8

1
2 4 6 8

10
2 4

qRg

 Bâton
 Chaîne bon solvant
 Chaîne idéale
 Boule

index.html
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Châıne idéale :
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Le mesure est sensible à la
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Ex 3 : Facteurs d’élongation de la traduction

T.V. Budkevich et al. (2002), Biochemistry, 41 : 15342-15349 (PSI, Suisse)

Guinier dependencies of the neutron scattering intensity
normalized for the concentration at the molar eEF1A:tRNA
ratios of 1:3 and 3:1. The essential changes of I(0)/C were
observed at the excess of protein over tRNA. From the
intercept value I(0)/C the approximate stoichiometry of the
complex was estimated as described in Experimental Pro-
cedures. Preliminary interpretation of the data could be that
the complex consists of two protein molecules and one tRNA
molecule. However, further investigations with another
methodical approach may be useful to clarify the point more
definitely.
In Figure 6 the scattering curves obtained in a wide range

of scattering vectors (from 0.1 to 1.5 nm-1) are plotted in
Kratky coordinates (IQ2 vs Q). In that case the scattering
curve for eEF1A is typical for nonglobular disordered
structures (39). Such shape of curves was observed also for
the protein:tRNA mixtures at ratios of 1:3 and 1:2 (data are
not shown for the sake of clarity of the picture). On the
contrary, the scattering curves became much closer to those
typical for globular structures (39) when eEF1A:tRNA ratios
were 3:1 and 2:1 (Figure 6; data at 2:1 ratio are not shown
for the sake of clarity of the picture). Thus, the formation of
the [eEF1A‚GDP‚tRNA] complex led to the essential com-
pactization of the eEF1A molecule.

DISCUSSION

The Mammalian Translation Factor Has Significantly
More Extended Conformation in Solution than the Prokary-
otic Analogue. According to the neutron scattering measure-
ments the rabbit liver eEF1A in the presence of 20 µM GDP
has a radius of gyration of 5.2 ( 0.2 nm, which is 2-fold
more than the calculated radius of gyration of its bacterial
analogue EF1A (2.6 nm, taking into account the molecular
mass difference; see the introduction). Thus, eEF1A is more
extended in solution than EF1A. According to the scanning
microcalorimetry the eEF1A molecule contains elements of
tertiary structure (three thermodynamic domains), melting
of which is reflected by the curves of heat absorption. The
positions of the peaks are affected by GDP. The characteristic
feature of the eEF1A melting was that the heat effect is much
lower than that expected for globular proteins with inflexible
three-dimensional structure. Such a behavior was observed
in a limited set of proteins containing unstructured regions
(histones, ribosomal protein L7) (40).
Thus, both the neutron scattering and microcalorimetry

data evidence the existence of a significantly disordered
structure of the mammalian eEF1A in solution. The following
possible structure of the mammalian eEF1A in solution could
be proposed. The eEF1A molecule consists of three distinct
globular domains, connected by rigid interconnecting pep-
tides, like prokaryotic EF1A. For S. solfataricus eEF1A (20)
a large interface between domains I and III is shown to be
responsible for the protein heat stability. Therefore, domains
I and III of the mammalian protein are hypothesized to be
disconnected in solution, resulting in the decreased heat
stability of eEF1A in comparison with the bacterial analogue.
Taking the length of the polypeptide chain joining domain I
and domain II equal to 1.5 nm, the length of polypeptide
chain joining domain II and domain III equal to 1.0 nm (13),
and approximating each domain by sphere with radius of
2.1 nm, one can calculate the radius of gyration of such a
trumbell model. This value is about 5.0 nm, which is close
to our experimental data obtained by the neutron scattering.

Table 1: Thermodynamic Parameters Describing the Melting of eEF1A and EF1A

protein q,a cal/g
∆Hcal,a
kJ/mol

∆H1,a
kJ/mol

∆H2,a
kJ/mol

∆H3,a
kJ/mol Td1,a K Td2,a K Td3,a K

eEF1A 4.30 905.0 256.0 361.0 288.0 311.7 320.1 326.9
eEF1A + 20 µM GDP 4.40 931.0 238.0 363.0 330.0 312.9 322.0 330.1
EF1A 6.60 1192.0 340.5 370.0 481.5 335.8 344.3 350.1
EF1A + 20 µM GDP 6.95 1252.0 361.0 398.0 493.2 339.1 347.4 352.0
a q is the specific heat of denaturation; calorimetric enthalpy ∆Hcal ) Mq, where M is the molecular mass; ∆Hi and Tdi are the calorimetric

enthalpy and midpoint temperature of each heat transition peak, correspondingly.

FIGURE 4: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates (log I vs Q2) extrapolated to the
zero concentration of eEF1A at 20 µM GDP.

FIGURE 5: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates to tRNA (b), eEF1A (O), eEF1A:
tRNA ) 1:3 (3), and eEF1A:tRNA)3:1 (1).

FIGURE 6: Dependence of neutron scattering intensity I on scattering
vector Q in Kratky coordinates for tRNA (b), eEF1A (1), and
eEF1A:tRNA ) 3:1 (O).

15346 Biochemistry, Vol. 41, No. 51, 2002 Budkevich et al.

Guinier :

log(I/C) = log(M)− q2R2
g/3 + · · ·
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cedures. Preliminary interpretation of the data could be that
the complex consists of two protein molecules and one tRNA
molecule. However, further investigations with another
methodical approach may be useful to clarify the point more
definitely.
In Figure 6 the scattering curves obtained in a wide range

of scattering vectors (from 0.1 to 1.5 nm-1) are plotted in
Kratky coordinates (IQ2 vs Q). In that case the scattering
curve for eEF1A is typical for nonglobular disordered
structures (39). Such shape of curves was observed also for
the protein:tRNA mixtures at ratios of 1:3 and 1:2 (data are
not shown for the sake of clarity of the picture). On the
contrary, the scattering curves became much closer to those
typical for globular structures (39) when eEF1A:tRNA ratios
were 3:1 and 2:1 (Figure 6; data at 2:1 ratio are not shown
for the sake of clarity of the picture). Thus, the formation of
the [eEF1A‚GDP‚tRNA] complex led to the essential com-
pactization of the eEF1A molecule.

DISCUSSION

The Mammalian Translation Factor Has Significantly
More Extended Conformation in Solution than the Prokary-
otic Analogue. According to the neutron scattering measure-
ments the rabbit liver eEF1A in the presence of 20 µM GDP
has a radius of gyration of 5.2 ( 0.2 nm, which is 2-fold
more than the calculated radius of gyration of its bacterial
analogue EF1A (2.6 nm, taking into account the molecular
mass difference; see the introduction). Thus, eEF1A is more
extended in solution than EF1A. According to the scanning
microcalorimetry the eEF1A molecule contains elements of
tertiary structure (three thermodynamic domains), melting
of which is reflected by the curves of heat absorption. The
positions of the peaks are affected by GDP. The characteristic
feature of the eEF1A melting was that the heat effect is much
lower than that expected for globular proteins with inflexible
three-dimensional structure. Such a behavior was observed
in a limited set of proteins containing unstructured regions
(histones, ribosomal protein L7) (40).
Thus, both the neutron scattering and microcalorimetry

data evidence the existence of a significantly disordered
structure of the mammalian eEF1A in solution. The following
possible structure of the mammalian eEF1A in solution could
be proposed. The eEF1A molecule consists of three distinct
globular domains, connected by rigid interconnecting pep-
tides, like prokaryotic EF1A. For S. solfataricus eEF1A (20)
a large interface between domains I and III is shown to be
responsible for the protein heat stability. Therefore, domains
I and III of the mammalian protein are hypothesized to be
disconnected in solution, resulting in the decreased heat
stability of eEF1A in comparison with the bacterial analogue.
Taking the length of the polypeptide chain joining domain I
and domain II equal to 1.5 nm, the length of polypeptide
chain joining domain II and domain III equal to 1.0 nm (13),
and approximating each domain by sphere with radius of
2.1 nm, one can calculate the radius of gyration of such a
trumbell model. This value is about 5.0 nm, which is close
to our experimental data obtained by the neutron scattering.

Table 1: Thermodynamic Parameters Describing the Melting of eEF1A and EF1A

protein q,a cal/g
∆Hcal,a
kJ/mol

∆H1,a
kJ/mol

∆H2,a
kJ/mol

∆H3,a
kJ/mol Td1,a K Td2,a K Td3,a K

eEF1A 4.30 905.0 256.0 361.0 288.0 311.7 320.1 326.9
eEF1A + 20 µM GDP 4.40 931.0 238.0 363.0 330.0 312.9 322.0 330.1
EF1A 6.60 1192.0 340.5 370.0 481.5 335.8 344.3 350.1
EF1A + 20 µM GDP 6.95 1252.0 361.0 398.0 493.2 339.1 347.4 352.0
a q is the specific heat of denaturation; calorimetric enthalpy ∆Hcal ) Mq, where M is the molecular mass; ∆Hi and Tdi are the calorimetric

enthalpy and midpoint temperature of each heat transition peak, correspondingly.

FIGURE 4: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates (log I vs Q2) extrapolated to the
zero concentration of eEF1A at 20 µM GDP.

FIGURE 5: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates to tRNA (b), eEF1A (O), eEF1A:
tRNA ) 1:3 (3), and eEF1A:tRNA)3:1 (1).

FIGURE 6: Dependence of neutron scattering intensity I on scattering
vector Q in Kratky coordinates for tRNA (b), eEF1A (1), and
eEF1A:tRNA ) 3:1 (O).
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possible structure of the mammalian eEF1A in solution could
be proposed. The eEF1A molecule consists of three distinct
globular domains, connected by rigid interconnecting pep-
tides, like prokaryotic EF1A. For S. solfataricus eEF1A (20)
a large interface between domains I and III is shown to be
responsible for the protein heat stability. Therefore, domains
I and III of the mammalian protein are hypothesized to be
disconnected in solution, resulting in the decreased heat
stability of eEF1A in comparison with the bacterial analogue.
Taking the length of the polypeptide chain joining domain I
and domain II equal to 1.5 nm, the length of polypeptide
chain joining domain II and domain III equal to 1.0 nm (13),
and approximating each domain by sphere with radius of
2.1 nm, one can calculate the radius of gyration of such a
trumbell model. This value is about 5.0 nm, which is close
to our experimental data obtained by the neutron scattering.
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FIGURE 4: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates (log I vs Q2) extrapolated to the
zero concentration of eEF1A at 20 µM GDP.

FIGURE 5: Dependence of neutron scattering intensity I on scattering
vector Q in Guinier coordinates to tRNA (b), eEF1A (O), eEF1A:
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Guinier :

log(I/C) = log(M)− q2R2
g/3 + · · ·

Pelote

P (q) ≈ (1− (qRg)2)−1

Boule

P (q) ≈ (1− (qRg)4)−1
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Ex 4 : Repliement d’une protéine multidomaine

D. Lairez et al. (2003), Biophys. J., 84 : 3904-3916 (PACE, LLB, Saclay)

understanding high molecular weight protein folding. Here,
we report a small-angle neutron scattering (SANS) study
performed on dilute solutions. In native condition, this
protein adopts the conformation of a flexible string of 56
globules of 25-Å radius each (Pelta et al., 2000). In 8 M urea
solution (denaturing condition) the protein is unfolded and
swells as a linear polymer in good solvent. Our key
observation is the following: as urea is slowly removed
from the solution, fibronectin does not recover its native
conformation; and two different collapsed conformations
have been clearly identified, depending on the added salt
concentration. At physiological ionic strength (150 mM
NaCl), the protein collapses at large length scale but remains
Gaussian at small length scales, and the globule still contains
a large amount of solvent. In salt-free solution, the badly
refolded protein is not globular but displays both a coil-like
and an open conformation at large length scales and a local
high density area. We will see that polyampholyte theories
reasonably account for this behavior.

SAMPLES PREPARATION AND THE
SANS EXPERIMENTS

Fibronectin was purified from human cryoprecipitated
plasma as described by Poulouin et al. (1999), and Pelta
et al. (2000). The purity of the preparation was determined
equal to 96.6 6 1.2% by densitometry analysis of silver
nitrate-stained SDS-polyacrylamide gel electrophoresis. In
this article we describe SANS experiments performed on
seven protein samples that experienced different physico-
chemical conditions (see Fig. 1). For each sample, 3 cm3 of
fibronectin solution at a concentration of 8 mg/cm3 in H2O
with 10 mM Tris-HCl (pH ¼ 7.4), were first dialyzed during
24 h, at room temperature using a microdialysis cassette
(Slide-A-Lyzer, 10,000 Mw cutoff; Pierce, Rockford, IL)
against 100 cm3 of solution containing either D2O with 10
mM Tris-DCl (pH ¼ 7.4) and 150 mM NaCl (samples 1–3),
or pure D2O at a measured pH of 7 (samples 4–7). A second
dialysis with the same volume ratio was performed against

D2O with 10 mM Tris-DCl (pH ¼ 7.4) and 150 mM NaCl
(sample 1); or 8 M deuterated urea in D2O with 10 mM Tris-
DCl (pH¼ 7.4) and 150 mMNaCl (samples 2 and 3); or pure
D2O (sample 4); or 8 M deuterated urea in pure D2O
(samples 5–7). For samples 3, 6 and 7, urea was slowly
eliminated by successive dialyzes against 100 cm3 of sol-
utions at the same ionic strength but decreasing deuterated
urea concentration (6, 4, 2, 1, and 0 M) for a total dialysis
duration of three days. Finally, for sample 7, 150 mM NaCl
and Tris-DCl 10 mM were added in the solution. For each
sample, fibronectin concentrations were measured after
dialysis by optical absorbance measurements of A1%

280nm ¼
12:8; A1%

280nmðurea 8MÞ ¼ 14: Here, it has to be noted that
samples 4–6, in order to reach the lowest ionic strength
possible at this protein concentration (8 mg/cm3), do not
contain any added salt or Tris buffer. For these samples, it
was checked that protein buffering would be enough to
ensure a measured pH always between 7 and 7.5. Although
these pH variations are important, they do not allow
modification of the charges distribution on the protein.
SANS experiments in dilute solutions require, in most cases,
the use of D2O as solvent, and D2O itself is known to affect
folded-unfolded transitions. But only slight effects are
expected (Russo et al., 2001). As far as this article is
concerned, by extreme conformations in the phase diagram
(0 M urea or 8 M urea) and not by intermediate states, such
D2O effects can be reasonably neglected.
In samples 1 and 4, fibronectin is at physiological pH, and

has never undergone the denaturing condition; the corre-
sponding protein will be called native. In samples 2 and 5,
fibronectin was denatured by 8 M urea; it will be called
unfolded. In samples 3 and 6, urea was eliminated, and these
samples will be called refolded. Sample 7 has undergone the
same history as sample 6, and NaCl was added only after
refolding. We will refer to this sample as refolded in salt-free
solution with added salt.
SANS experiments were performed on the PACE

spectrometer at the LLB Institute, Saclay, France. To cover
the widest range of scattering vector q, three different
configurations were used for the sample-to-multidetector
distance and for the wavelength: A), small q-range 4.7 m/15
Å; B), intermediate q-range 2.3 m/6 Å; and C), high q-range
0.6 m/4 Å. Data treatment was carried out following Cotton
(Cotton, 1991). Measurements performed using the high q
configuration were used for incoherent scattering subtrac-
tion. For absolute measurements, the contrast factor, K2, was
calculated, neglecting protein glycosylation, and following
Jacrot for the values of the different amino-acid-specific
volumes and effective H-D exchanges (Jacrot, 1976). For
nativefibronectin inD2O,K

2¼1.1010$3cm2g$2mol,assum-
ing that 80% of labile hydrogens is actually exchanged.
For fibronectin in 8 M urea, K2 ¼ 1.22 10$3 cm2 g$2 mol,
assuming that all labile hydrogens are exchanged. For
measurements in D2O after denaturation (the refolded
protein) K2 ¼ 0.93 10$3 cm2 g$2 mol, assuming that allFIGURE 1 The seven samples here studied and their history.
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the shape of the molecules remains unaffected by salt
addition, the ratio of measurement performed for salt-free
solution to that performed for salt-containing solution would
lead to the intermolecular structure factor S(q) (see Eq. 2).
However, in the case of macromolecules having a soft
conformation, intramolecular interactions distort their shape.
This is typically the case of unfolded protein (samples 2 and
5) but also the case of native fibronectin (samples 1 and 4)
because of its particular flexible string-of-beads conforma-
tion. Consequently, the corresponding scattered intensity
spectra are more complex to interpret. This point will be
discussed in the following section.

DISCUSSION

Two characteristic lengths have to be kept in mind. The
Bjerrum length, lB, is the distance at which the Coulomb
energy between two charges is kT. In water at room
temperature, lB ¼ e2/(4pere0 3 kT ) ¼ 7.2 Å. The ionic
strength, I, screens electrostatic interactions beyond the
length k"1

0 ¼ ð4plBIÞ"1=2: Taking into account only added
salt, k"1

0 ¼ 10:7 Å in our salt-containing solutions.

Native and unfolded states in
salt-containing solutions

In the salt-containing solutions, one can assume that electro-
static intermolecular interactions are screened. In dilute solu-
tion and in the q-range of our measurements, the scattering
intensity spectra give the form factor of the molecule. We
have already reported (Pelta et al., 2000) the statistical con-
formation of fibronectin in native condition and 8 M urea
solution in salt-containing solution (samples 1 and 2). Let us
briefly recall these results. In Fig. 6, the two spectra are plot-
ted in a Kratky representation and compared to the theoreti-
cal expectations. For native fibronectin, one can reasonably

account for the spectrum using a flexible string-of-spherical-
beads (or dense globules)model that is obtained followingEq.
11. One has to note that in Fig. 6, the corresponding full line is
not a fit of the data, but results from a model without any
adjustable parameter. The number of 56 beads is the number
of modules fibronectin is made of (modules mainly defined as
being partly resistant to proteolysis). These modules are of
three different types and sizes. They are separated by small
polypeptide segments (highly sensitive to proteolysis) and

FIGURE 4 Form factors of samples in salt-containing solution in a Kratky
representation P(q) 3 (qRg)

2 versus qRg. The symbols meaning is the same

as in Fig. 2. The straight line corresponds to (qRg)
2.

FIGURE 5 Scattering function versus q. (a) Native fibronectin in salt-

containing and salt-free solution; (b) unfolded fibronectin in salt-containing

and salt-free solution; and (c) refolded fibronectin in salt-free solution with

and without added salt. For the sake of clarity, error bars are only displayed
for salt-containing solutions; however, in both cases they are of the same

order of magnitude.
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Ex 4 : Repliement d’une protéine multidomaine (suite)

D. Lairez et al. (2003), Biophys. J., 84 : 3904-3916 (PACE, LLB, Saclay)

should be more adequately described using an oblong shape.
Our crude string-of-beads model does not take these refine-
ments into consideration. From this model and the measured
radius of gyration, one deduces an average radius of the order
of 25 Å for each globule of the string.
As for fibronectin in 8 M urea, P(q) shows a near-q!5/3

behavior at qRg[ 1 that is characteristic of a chain with an
excluded volume conformation. P(q) can be described in the
whole q-range by the product of Eq. 10 and Eq. 8 (or 7) to
account for the finite thickness and size of monomers. In Fig.
6, the full line corresponds to

PðqÞ ¼ 1

ð11 ðqRgÞ2ÞD=2
3Psphereða3 qRgÞ

with
D ¼ 1:656 0:05

a ¼ ð226 1Þ3 10!3

!
: (13)

Here, the high q behavior is fitted using a sphere form factor
rather than the Guinier approximation, but this is only to fit
the data up to qa ¼ 2 and we do not claim that the monomer
is spherical. The parameter a is no more than the average
monomer size in the longitudinal and transverse directions
with respect to the chain sequence, i.e., persistence length
and chain half-thickness, respectively. Actually, using a more
general expression for the form factor (Pedersen and
Schurtenberger, 1996) of swollen chain, it has been shown
for unfolded protein that these two lengths are of the same
order of magnitude (Russo, 2000). This justifies the use of
Eq. 13. In this equation, a is expressed in Rg unit. The actual
value of Rg (see Table 1) leads to

a ¼ ð6:6 6 0:5Þ Å: (14)

This result is in good agreement with the value reported in
the literature for unfolded protein thickness and/or persis-
tence length (Russo, 2000). Eq. 14 leads to a Kuhn length

(i.e., the length of the statistical segment that is twice the
persistence length) b ¼ 2a ¼ 13.2 Å for the unfolded
fibronectin, which has to be compared to k!1

0 ¼ 10:7 Å and
is consistent with the assumption of screened electrostatic
interactions. Assuming a length of 3.45 Å for each amino
acid (Russo et al., 2000), from the value for b the unfolded
protein is a flexible chain made of 1250 statistical segments.

Native and unfolded states: salt effect

A preliminary question is whether the conformations of pro-
tein in native and unfolded states are affected by salt remov-
ing. As mentioned above, the form factors of molecules in
salt-free solution cannot be deduced from measurements.
Only qualitative comparisons of experiments with theoretical
expectations can give a general idea of structure changes
with salt removing. In Fig. 7 the salt effect on the scattering
spectra is shown in a Kratky representation.
First, in the case of native and unfolded protein, notice that

the spectra match, by pairs, at high q; i.e., the measurements
for native protein with and without salt (samples 1 and 4) on
one hand and the measurements on unfolded protein
(samples 2 and 5) on the other hand. This indicates that the
local conformation of the protein is not affected by the ionic
strength but depends on urea concentration. In particular,
fibronectin is presumably just as unfolded without salt
(sample 2) as with salt (sample 5). Another argument
supporting this idea concerns the structure factor. A major
difference between interaction peaks observed for dense
structure (hard spheres) and those observed for unfolded
chains (polyelectrolytes) is that the former increases in
intensity with concentration whereas the latter decreases
(Stevens and Kremer, 1995; Shew and Yethiraj, 1999, 2000).
Thus, at a given concentration one expects a less marked
peak for an unfolded conformation. This is what we observe
in Fig. 5, a and b.

FIGURE 6 Form factor of the native and unfolded fibronectin plotted in

a Kratky representation: P(q)3 (qRg)
2 versus qRg. The full lines correspond

to the theoretical expectation for a sphere (Eq. 8), a string of 56 beads (Eq.

12), a Gaussian chain with infinitely small monomer (Debye function, Eq.
9), and a swollen chain with a finite thickness (Eq. 13).

FIGURE 7 Same data as in Fig. 5, a and b, but in a Kratky representation
(q2Icoh versus q).
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observed on the form factor. Thus, the compact set-of-
Gaussian-blobs picture was tested by Monte Carlo computer
simulations based on the observation that a chain confined in
a sphere adopts the same conformation but for a different
physical reason. The corresponding P(q) was computed as
follows.

1. A random walk of 1250 steps is generated (this number
comes from the unfolded conformation results; see
Native and Unfolded States in Salt-Containing Solutions)
with the constraint that the walker cannot reach a distance
larger than Rc (radius of confinement) from the center of
mass of the walk. This is obtained by reflection of the
walk as Rc is reached.

2. P(q) and Rg of the random walk are computed by
averaging over all orientations (see Eq. 6).

3. P(q) and Rg of the random walk are averaged over
several iterations depending on Rc. For small Rc values,
the number of possibilities for the chain conformation is
small and the calculation of P(q) converges rapidly in
less than 100 iterations, whereas high Rc values require
up to 104 iterations.

4. To account for the finite width and radius a of statistical
segments of the chain, the averaged P(q) of the random
walk is multiplied by the form factor of a sphere of radius
a (Eq. 11 and 13).

The resulting form factors are plotted in Fig. 8. The two
border full lines correspond to the theoretical form factors of
Gaussian chain and compact sphere, respectively, whereas
the intermediate full lines correspond to a progressive
confinement of the chain. The measured spectra for
fibronectin refolded in salt-containing solution nicely fits
within the bundle of confined chain curves. To free from the
discrete number of simulations, i.e., discrete number of Rc,

the experimental data were fitted using a linear combination
of the spectra obtained by computer simulation weighted by
a Gaussian distribution in Rc:

pðRcÞ ¼
ffiffiffiffiffiffiffiffiffi
2ps

p" #$1=2

e$ðRc$Rc
$$$Þ2=ð2s2Þ;

where one gets Rc=a ¼ ð16 6 2Þ; and Rc=Rg ¼ 1:57: The
actual radius of gyration measured by SANS (see Table 1)
leads to Rc ¼ 1396 15 Å:
Note that although the curve fitting is obtained with only

two adjustable parameters (Rc and s), it describes well our
measurements in the whole q-range. In particular, the
second-order oscillation due to the finite size of the spherical
confinement volume appears on the fitted curve and on the
data also. As for the first-order oscillation, we observe,
experimentally, a smoothing that can be ascribed to the
spectrometer resolution (Lairez, 1999). Actually, this
oscillation lies in a q-range corresponding to the smallest
q-values of the intermediate q configuration of our experi-
ments (see Samples Preparation and the SANS Experiments,
configuration B), i.e., data points with the lowest resolution.
Our result proves unambiguously that the chain in salt-

containing solution collapses at large length scales but
remains Gaussian at small length scales. In other words, the
globule embodies a large quantity of solvent compared to the
compact situation. The volume fraction of protein inside the
globule can be estimated to be

f% ¼ N
a

Rc

$ %3

¼ 0:36 0:1: (18)

From Eq. 17 and the reported value for a (Eq. 14) the blob
size, j, can thus be estimated as being ;33 6 12 Å.
Let us come back to the problem of Rg measurement. As

P(q) of the refolded protein in salt-containing solution has
been identified, one can check the validity of Rg determined
in an extended Guinier q-range, i.e., up to qRg ¼ 2. Fig. 9 is
a Guinier representation (ln(P(q) versus q2) of the small q
part of our measurements and simulation. Because of the
globular shape of the protein, this representation is expected
to be the most appropriate for the radius determination (see
Eq. 7 and remark below). The data points obtained from
simulation display a reasonable linear behavior up to qRg¼ 2
and differ very little from the expected exponential decay
SðqÞ ¼ e$ðqRqÞ2=3 (straight line in Fig. 9). From this
difference at qRg ¼ 2, one deduces that fitting our data in
this q-range by a linear approximation leads us to un-
derestimate the actual radius of gyration by 4%. This value
corresponds to the error bar reported on Table 1. As for
measurements (triangles in Fig. 9), apart from the first four
data points, which clearly indicate the presence of a few
aggregates in the solution, the same linear behavior is found.
Note that the fit leads to the correct value of the scattered
intensity extrapolated at q ¼ 0 in view of the molecular mass
of the protein. This makes us confident on the reported Rg

value.

FIGURE 8 P(q) 3 (qRg)
2 versus qRg for fibronectin refolded in salt-

containing solution (data points) compared to confined chains (lines). (Top
to bottom), lines correspond to: Debye function (unconfined Gaussian chain
with infinitely small monomer); confined chains with radius of confinement,

Rc from 30- to 4-step-length unit; and compact sphere. The line fitting the

data corresponds to Rc ¼ 166 2 step-length unit.
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Ex 5 : Superhélice d’ADN

Psuperhélice = Pglobal(q) × Plocal(q)

∝ q−1 ×
(
1 + sin(qd)

qd

)
M. Hammermann et al. (1998), Biophys. J., 75 : 3057-3063 (D22, ILL, Grenoble)

The shape of this curve is similar to the form factor of a pair
of point scatterers at a constant distance d, fp(d, q) ! [1 "
(sin(qd)/qd)]2 (solid lines in Fig. 5). This behavior is to be
expected if a certain intramolecular distance occurs with
high probability in the superhelical, but not in the relaxed
DNA. The Debye formula for the scattering form factor of
a macromolecule consisting of identical subunits is

P#q$ !
1
N2 !

i!1

N !
j!1

N sin#q"r!i " r!j"$
q"r!i " r!j"

f 2#q$ (5)

where f(q) is the q-dependent scattering form factor of the
subunit (Cantor and Schimmel, 1980). We now compare
two macromolecules A and B: A is a chain of point scat-
terers, B is the same chain but with pairs of point scatterers
at a distance d arranged with their center of mass on the
backbone of the chain. Thus, in Eq. 5 the coordinates r"i will
be the same for the two structures, only f(q) will be equal to
1 for structure A and equal to fP(d, q) for structure B. The
ratio of the scattering intensities IB/IA will then be fP(d, q).

In the case of a superhelical DNA where a certain intramo-
lecular distance occurs with high probability we should find
a very similar behavior.
We therefore concluded that the diameter of the super-

helical regions of the DNA can be determined from a
quantitative comparison of the NaCl-dependent scattering
curves of superhelical DNA and the NaCl-independent scat-
tering curve of relaxed DNA. To proceed, we fitted the form
factor fP(d, q) multiplied by a scaling factor a, to the curves
in Fig. 5. The fits yielded a value for a of the order of 0.5.
The value of d, which can be regarded as the superhelix
diameter, decreased from 16.0 % 0.9 nm at 0 mM to 13.8 %
1.1 nm at 10 mM, 11.5 % 0.7 nm at 40 mM, 9.0 % 0.8 nm
at 100 mM. No further shift of r at 500, 1000, or 1500 mM
NaCl was detected. We regard this as a direct measure of the
interstrand separation in interwound regions of the DNA
superhelix, since the curve undulation only appears in su-
percoiled DNA and intermolecular interference effects can
be excluded.

DNA simulations

We assume in the following that the 10 mM Tris present in
the buffer can be taken into account by additional 10 mM
NaCl in the simulations. We therefore speak about salt
concentration, which means 10 mM Tris plus added NaCl.
The salt-dependent change in the static form factor was
predicted in simulated scattering curves of pUC18 and
p1868. The relative decrease in the scattering intensity from
10 mM to 100 mM salt concentration is of similar size as in
the measured curves. The superimposed measured and sim-
ulated scattering curves of pUC18 and p1868 are shown in
Figs. 6 and 7, respectively.
Since the simulated scattering functions agree very

closely with the measured ones for both plasmids, we may
conclude that the Monte Carlo simulation procedure is a

FIGURE 3 Measured scattering intensity I(q) of pUC18 at 0 mM (E)
and 100 mM (ƒ) and p1868 at 0 mM (F) and 100 mM (!) Na"

concentrations, both supercoiled, in D2O, 10 mM Tris.

FIGURE 4 Measured scattering intensity I(q) of pUC18, relaxed, in
H2O, 10 mM Tris, at 0 mM (E) and 100 mM (!) NaCl concentrations.

FIGURE 5 Ratio of the measured scattering intensities I(q) of pUC18,
supercoiled, in H2O, 10 mM Tris, at 0 mM (E), and 100 mM (ƒ) Na"

concentrations and relaxed pUC18 DNA at 100 mM Na" concentration.
The solid lines are the scattering form factors of a pair of point scatterers
at a distance r ! 16.0 nm (thin line) and r ! 9.0 nm (thick line).
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P#q$ !
1
N2 !

i!1

N !
j!1

N sin#q"r!i " r!j"$
q"r!i " r!j"

f 2#q$ (5)

where f(q) is the q-dependent scattering form factor of the
subunit (Cantor and Schimmel, 1980). We now compare
two macromolecules A and B: A is a chain of point scat-
terers, B is the same chain but with pairs of point scatterers
at a distance d arranged with their center of mass on the
backbone of the chain. Thus, in Eq. 5 the coordinates r"i will
be the same for the two structures, only f(q) will be equal to
1 for structure A and equal to fP(d, q) for structure B. The
ratio of the scattering intensities IB/IA will then be fP(d, q).

In the case of a superhelical DNA where a certain intramo-
lecular distance occurs with high probability we should find
a very similar behavior.
We therefore concluded that the diameter of the super-

helical regions of the DNA can be determined from a
quantitative comparison of the NaCl-dependent scattering
curves of superhelical DNA and the NaCl-independent scat-
tering curve of relaxed DNA. To proceed, we fitted the form
factor fP(d, q) multiplied by a scaling factor a, to the curves
in Fig. 5. The fits yielded a value for a of the order of 0.5.
The value of d, which can be regarded as the superhelix
diameter, decreased from 16.0 % 0.9 nm at 0 mM to 13.8 %
1.1 nm at 10 mM, 11.5 % 0.7 nm at 40 mM, 9.0 % 0.8 nm
at 100 mM. No further shift of r at 500, 1000, or 1500 mM
NaCl was detected. We regard this as a direct measure of the
interstrand separation in interwound regions of the DNA
superhelix, since the curve undulation only appears in su-
percoiled DNA and intermolecular interference effects can
be excluded.

DNA simulations

We assume in the following that the 10 mM Tris present in
the buffer can be taken into account by additional 10 mM
NaCl in the simulations. We therefore speak about salt
concentration, which means 10 mM Tris plus added NaCl.
The salt-dependent change in the static form factor was
predicted in simulated scattering curves of pUC18 and
p1868. The relative decrease in the scattering intensity from
10 mM to 100 mM salt concentration is of similar size as in
the measured curves. The superimposed measured and sim-
ulated scattering curves of pUC18 and p1868 are shown in
Figs. 6 and 7, respectively.
Since the simulated scattering functions agree very

closely with the measured ones for both plasmids, we may
conclude that the Monte Carlo simulation procedure is a

FIGURE 3 Measured scattering intensity I(q) of pUC18 at 0 mM (E)
and 100 mM (ƒ) and p1868 at 0 mM (F) and 100 mM (!) Na"

concentrations, both supercoiled, in D2O, 10 mM Tris.

FIGURE 4 Measured scattering intensity I(q) of pUC18, relaxed, in
H2O, 10 mM Tris, at 0 mM (E) and 100 mM (!) NaCl concentrations.

FIGURE 5 Ratio of the measured scattering intensities I(q) of pUC18,
supercoiled, in H2O, 10 mM Tris, at 0 mM (E), and 100 mM (ƒ) Na"

concentrations and relaxed pUC18 DNA at 100 mM Na" concentration.
The solid lines are the scattering form factors of a pair of point scatterers
at a distance r ! 16.0 nm (thin line) and r ! 9.0 nm (thick line).

3060 Biophysical Journal Volume 75 December 1998

index.html


Variations sur le contraste

Marquage isotopique

40

30

20

10

0

-10

lo
n

g
u

e
u

r 
d

e
 d

iff
u

si
o

n
 (

1
0

-1
3
 c

m
)

80604020
Z

 RX
 neutrons

10

8

6

4

2

0

-2

-4

lo
n

g
u

e
u

r 
d

e
 d

iff
u

si
o

n
 (

1
0

-1
3
 c

m
)

43210
Z

 RX
 neutrons

index.html


Variations sur le contraste

Marquage isotopique

40

30

20

10

0

-10

lo
n

g
u

e
u

r 
d

e
 d

iff
u

si
o

n
 (

1
0

-1
3
 c

m
)

80604020
Z

 RX
 neutrons

10

8

6

4

2

0

-2

-4

lo
n

g
u

e
u

r 
d

e
 d

iff
u

si
o

n
 (

1
0

-1
3
 c

m
)

43210
Z

 RX
 neutrons

8

6

4

2

0

 b
/v

 (
x
1
0

1
0
 c

m
2
)

D2O

H2O

Protéine H

Protéine D

index.html


Mélange de deux espèces identiques
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index.html


Ex 6 : Etude d’un chaperon moléculaire, GroEL

S. Krueger et al. (2003), J. Struct. Biol., 141 : 240-258 (30m SANS, NCNR, Gaithersburg)

the molecular weights and partial specific volumes of the
components, giving confidence in the results. A com-
parison of the scattered intensities for bound GroEL
and srGroEL and those measured for the molecules free
in solution (Fig. 1) indicate that little or no change in
GroEL conformation occurs upon binding the substrate
polypeptide. SANS measurements are typically sensitive
to changes in Rg of 6 1!AA, depending upon the solvent
conditions used. The Rg values found by Guinier anal-
ysis for free GroEL and srGroEL in solution (Table 1)
agree with those found for bound GroEL and srGroEL
in the complex (Table 3), indicating no major shape
change. It has been shown in Fig. 2 that the SANS
measurements are sensitive to a 5! outward rotation of
the srGroEL apical domains. While this does not result
in an increase in Rg, it has a detectable effect on the

shape of the scattered intensity at higher Q values. Since
no major change in the shape of the free and bound
GroEL and srGroEL curves was observed, even at
higher Q values, it can be concluded that structural
changes such as a 5! change in rotation of the apical
domains also do not occur upon substrate binding.
While this result is in agreement with the previous SANS
studies of substrate binding to GroEL (Thiyagarajan
et al., 1996), it does not agree with recent cryo-electron
microscopy studies (Falke et al., 2001a,b) in which a
reduction in the outer diameter of the apical domains
was observed, along with a constriction of the nonoc-
cupied trans cavity opening. However, a larger substrate
(Mw ¼ 52 kg/mol) was used in the latter study, which
may account for the structural differences observed in
the GroEL upon substrate binding.

Modeling of dPJ9 bound to GroEL/dPJ9 and srGroEL/
dPJ9 complexes

The location of dPJ9 in the complexes was confirmed
using the data from the GroEL/dPJ9 complex. The Rg

value for dPJ9 is listed as 71" 1!AA in Table 3, which
represents the radius of gyration of the two dPJ9 mol-
ecules bound in the complex. The subsidiary maximum
seen at Q # 0:05!AA

$1
in the data for the dPJ9 component

(solid squares in Fig. 6a) is due to the interference be-
tween the two dPJ9 molecules, which are separated from
each other along the center line of the GroEL. Making
use of the relation d ¼ 2p=Q, where Q is the location of
the peak (#0:05!AA

$1
), the distance between the centers

of masses of the two dPJ9 molecules is approximately
125!AA. This means that at least a portion of the dPJ9
must reside in the GroEL cavity.

Modeling of the shape of dPJ9 was accomplished
using the srGroEL/dPJ9 data. A Monte Carlo method
in which a large number of cylindrical, ellipsoidal, and

Fig. 5. ½Ið0Þ=c(1=2 vs % D2O plots corresponding to the contrast vari-
ation series for GroEL/dPJ9 (j) and srGroEL/dPJ9 (s) complexes.
The lines are the linear fits to the data, which allow calculation of the
match point for each complex.

Fig. 6. Scattered intensities of the GroEL (IELðQÞ) (s) and dPJ9 (IdPJ9ðQÞ) (j) components as bound in (a) the GroEL/dPJ9 complex and (b) the
srGroEL/dPJ9 complex.

S. Krueger et al. / Journal of Structural Biology 141 (2003) 240–258 249
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S =
n∑
i

n∑
j
bibjSij

S (b1, b2) = 2b1b2S12 + b21S11 + b22S22

+2b1
n∑
i=3

biS1i

+2b2
n∑
i=3

biS2i

+
n∑
i=3

n∑
i=3

bibjSij

S (b1D, b2D)

+S (b1H , b2H)

−S (b1D, b2H)

−S (b1H , b2D)

= 2(b1D − b1H)(b2D − b2H)S12(q)

S12(q) ≈ sin(qd12)

index.html


Marquage sélectif
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Ex 7 : Triangulation et structure quaternaire des sous-

unités ribosomales

M.S. Capel et al. (1987), Science, 238 : 1403-1406 (Brookhaven)

    

P1: ARK/ary P2: ARK/plb QC: ARK

March 27, 1998 8:28 Annual Reviews AR056-02

40 MOORE

Figure 2 The placement of proteins within the 30S subunit. Proteins are shown as spheres the
volumes ofwhich are proportional tomolecularweight. Their placementwas determinedbyneutron
scattering (10). The protein array is superimposed on the outline of the 30S subunit in a manner
that maximizes its overlap with epitope positions determined by immunoelectron microscopy. This
figure was provided by Malcolm Capel.
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